Spinning Atoms with Light: a new twist on atom optics

Bill Phillips, NIST Gaithersburg
Event Date and Time: 
Thu, 2014-04-03 16:00 - 17:00
Hennings 201
Local Contact: 
Robert Raussendorf, David Jones
Intended Audience: 
Physicists have used light and its polarization to elucidate the internal state of atoms since the 19th century. Early in the 20th century, the momentum of light was used to manipulate the center-of-mass motion of atoms. The latter part of the 20th century brought optical pumping, coherent laser excitation, and laser cooling and trapping as tools to affect both the internal and external states of atoms. Bose-Einstein condensation created atomic samples having laser-like deBroglie-wave coherence, and “atom optics” techniques like Bragg diffraction provided coherent mirrors and beamsplitters for the coherent atoms. Recently, an extension of Bragg diffraction, using light beams with orbital angular momentum (angular momentum associated not with the optical polarization, but with the shape of the spatial mode), provided a new tool for coherent manipulation of atomic motion, creating coherent rotation of atom clouds, and persistent flow of superfluid atoms in toroidal traps. In the latest experiments, we have introduced an optical weak-link into the superfluid flow, allowing us to explore the behavior of an atomtronics circuit with an interesting circuit element.
Website development by Checkmark Media. Designed by Armada.

a place of mind, The University of British Columbia

Faculty of Science
Department of Physics and Astronomy
6224 Agricultural Road
Vancouver, BC V6T 1Z1
Tel 604.822.3853
Fax 604.822.5324

Emergency Procedures | Accessibility | Contact UBC | © Copyright The University of British Columbia