Spring 2023 Physics Qualifying Exam for Advancement to Candidacy

Part 1
August 25, 2023
9:00-11:15 PDT

If you are in the PhD in astronomy or PhD in medical physics programs, stop! This is the physics version of the exam. Please ask the proctor for the version appropriate for your program instead.

Do not write your name on your exam papers. Instead, write your student number on each page. This will allow us to grade the exams anonymously. We'll match your name with your student number after we finish grading.

This portion of the exam has 4 questions. Answer any three of the four. Do not submit answers to more than 3 questions-if you do, only the first 3 of the questions you attempt will be graded. If you attempt a question and then decide you don't want to it count, clearly cross it out and write "don't grade".

You have 2 hours and 15 minutes to complete 3 questions.

You are allowed to use one $8.5^{\prime \prime} \times 11^{\prime \prime}$ formula sheet (both sides), and a handheld, non-graphing calculator.

Here is a possibly useful table of physical constants and formulas:

absolute zero	0 K	$-273^{\circ} \mathrm{C}$
atomic mass unit	1 amu	$1.661 \times 10^{-27} \mathrm{~kg}$
Avogadro's constant	N_{A}	6.02×10^{23}
Boltzmann's constant	k_{B}	$1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
charge of an electron	e	$1.6 \times 10^{-19} \mathrm{C}$
distance from earth to sun	1 AU	$1.5 \times 10^{11} \mathrm{~m}$
Laplacian in spherical coordinates	$\nabla^{2} \psi=$	$\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}}(r \psi)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \psi}{\partial \phi^{2}}$
mass of an electron	m_{e}	$0.511 \mathrm{MeV} / \mathrm{c}^{2}$
mass of hydrogen atom	m_{H}	$1.674 \times 10^{-27} \mathrm{~kg}$
mass of a neutron	m_{n}	$1.675 \times 10^{-27} \mathrm{~kg}$
mass of a proton	m_{p}	$1.673 \times 10^{-27} \mathrm{~kg}$
mass of the sun	$M_{\text {sun }}$	$2 \times 10^{30} \mathrm{~kg}$
molecular weight of $\mathrm{H}_{2} \mathrm{O}$		18
Newton's gravitational constant	G	$6.7 \times 10^{-11} \mathrm{~N} \mathrm{~m} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
nuclear magneton	μ_{N}	$5 \times 10^{-27} \mathrm{~J} / \mathrm{T}$
permittivity of free space	ϵ_{0}	$8.9 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} / \mathrm{m}^{2}$
permeability of free space	μ_{0}	$4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A}^{2}$
Planck's constant	h	$6.6 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
radius of the Earth	$R_{\text {earth }}$	$6.4 \times 10^{6} \mathrm{~m}$
radius of a neutron	$R_{\text {neutron }}$	$3 \times 10^{-16} \mathrm{~m}$
speed of light	c	$3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Stefan-Boltzmann constant	σ	$5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$
Stirling's approximation	$N!$	$e^{-N} N^{N} \sqrt{2 \pi N}$

1.

A. Find the temperature dependence of the energy density associated with photons at temperature T in 3D space, assuming equilibrium. (You need the temperature dependence and the dependence on the speed of light; the dimensionless prefactor doesn't play much role below.)
B. For photons, the entropy density can be directly related to the energy density from part A. Using dimensional analysis, can you find the temperature and speed dependence of the entropy as well?
C. In complex quantum systems, photon-like excitations can emerge, which propagate with a tunable "speed of light" v. If this "speed of light" adiabatically changes from v to $2 v$, what is the change of the emergent photon temperature in this case? (You may assume that the excitations have a thermal spectrum.)
2. Order of magnitude estimation:
A. Estimate the total energy stored in ocean waves on the surface of the earth at any moment in time.
B. Estimate how close (in orders of magnitude) a modern-day computer processor is to fundamental thermodynamic limits on energy efficiency.
3. A spring of uniform stiffness and composition has a mass of m and an unstretched length of L. Its spring constant is measured to have some value k. The spring is allowed to hang under its own weight. Let f denote the fraction of the spring's mass that is below some location x, measured from the lower end of the spring. Calculate $x(f)$. What is the total length of the spring when hanging under its own weight: in other words, what is $x(1)$?
4. A particle moves in a potential well given by

$$
V(x)=\left(A x^{2}-B\right) \exp \left[-\alpha x^{2}\right]
$$

where A, B, and α are positive constants. At time $t=0$ the particle is at $x=0$ and has velocity v_{0} in the $+x$ direction. For the following, treat the problem relativistically.
A. For what range of v_{0} will the particle escape to infinity?
B. If the particle escapes to infinity, what velocity will it have in the limit that $t \rightarrow \infty$?
C. Suppose that a laser beam with power P, measured in the lab frame, is applied in the $-x$ direction. What power does the particle measure in its rest frame at $t=0$?

Spring 2023 Physics Qualifying Exam for Advancement to Candidacy
Part 2
August 25, 2023
12:30-14:45 PDT

If you are in the PhD in astronomy or PhD in medical physics programs, stop! This is the physics version of the exam. Please ask the proctor for the version appropriate for your program instead.

Do not write your name on your exam papers. Instead, write your student number on each page. This will allow us to grade the exams anonymously. We'll match your name with your student number after we finish grading.

This portion of the exam has 4 questions. Answer any three of the four. Do not submit answers to more than 3 questions-if you do, only the first 3 of the questions you attempt will be graded. If you attempt a question and then decide you don't want to it count, clearly cross it out and write "don't grade".

You have 2 hours and 15 minutes to complete 3 questions.

You are allowed to use one $8.5^{\prime \prime} \times 11^{\prime \prime}$ formula sheet (both sides), and a handheld, non-graphing calculator.

Here is a possibly useful table of physical constants and formulas (see back of page as well):

absolute zero	0 K	$-273^{\circ} \mathrm{C}$
atomic mass unit	1 amu	$1.661 \times 10^{-27} \mathrm{~kg}$
Avogadro's constant	N_{A}	6.02×10^{23}
Bohr radius of hydrogen atom	a_{0}	$5.3 \times 10^{-11} \mathrm{~m}$
Boltzmann's constant	k_{B}	$1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
charge of an electron	e	$1.6 \times 10^{-19} \mathrm{C}$
distance from earth to sun	1 AU	$1.5 \times 10^{11} \mathrm{~m}$
Laplacian in spherical coordinates	$\nabla^{2} \psi=$	$\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}}(r \psi)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \psi}{\partial \phi^{2}}$
mass of an electron	m_{e}	$0.5110 \mathrm{MeV} / \mathrm{c}^{2}$
mass of a neutron	m_{n}	$1.67493 \times 10^{-27} \mathrm{~kg}=939.5654 \mathrm{MeV} / c^{2}$
mass of a proton	m_{p}	$1.67262 \times 10^{-27} \mathrm{~kg}=938.2721 \mathrm{MeV} / c^{2}$
mass of the sun	$M_{\text {sun }}$	$2 \times 10^{30} \mathrm{~kg}$
molecular weight of $\mathrm{H}_{2} \mathrm{O}$		18
Newton's gravitational constant	G	$6.7 \times 10^{-11} \mathrm{~N} \mathrm{~m}$
permittivity of free space	ϵ_{0}	$8.9 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} / \mathrm{m}^{2}$
permeability of free space	μ_{0}	$4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A}^{2}$
Planck's constant	h	$6.6 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
radius of the Earth	$R_{\text {earth }}$	$6.4 \times 10^{6} \mathrm{~m}$
radius of a neutron	$R_{n e u t r o n}$	$3 \times 10^{-16} \mathrm{~m}$
speed of light	c	$3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Stefan-Boltzmann constant	σ	$5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$
Stirling's approximation	$N!$	$e^{-N} N^{N} \sqrt{2 \pi N}$

Table of Spherical Harmonics

$$
\ell=0
$$

$$
Y_{0}^{0}(\theta, \varphi)=\frac{1}{2} \sqrt{\frac{1}{\pi}}
$$

$$
\begin{aligned}
& \ell=1 \\
& \qquad \begin{array}{rlrl}
\boldsymbol{Y}=1 & \\
Y_{1}^{-1}(\theta, \varphi) & =\frac{1}{2} \sqrt{\frac{3}{2 \pi}} \cdot e^{-i \varphi} \cdot \sin \theta & =\frac{1}{2} \sqrt{\frac{3}{2 \pi}} \cdot \frac{(x-i y)}{r} \\
Y_{1}^{0}(\theta, \varphi) & =\frac{1}{2} \sqrt{\frac{3}{\pi}} \cdot \cos \theta & =\frac{1}{2} \sqrt{\frac{3}{\pi}} \cdot \frac{z}{r} \\
Y_{1}^{1}(\theta, \varphi) & =-\frac{1}{2} \sqrt{\frac{3}{2 \pi}} \cdot e^{i \varphi} \cdot \sin \theta & =-\frac{1}{2} \sqrt{\frac{3}{2 \pi}} \cdot \frac{(x+i y)}{r}
\end{array}
\end{aligned}
$$

$$
\ell=2
$$

$$
\begin{array}{rlrl}
Y_{2}^{-2}(\theta, \varphi) & =\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \cdot e^{-2 i \varphi} \cdot \sin ^{2} \theta & =\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \cdot \frac{(x-i y)^{2}}{r^{2}} \\
Y_{2}^{-1}(\theta, \varphi) & =\frac{1}{2} \sqrt{\frac{15}{2 \pi}} \cdot e^{-i \varphi} \cdot \sin \theta \cdot \cos \theta & & =\frac{1}{2} \sqrt{\frac{15}{2 \pi}} \cdot \frac{(x-i y) \cdot z}{r^{2}} \\
Y_{2}^{0}(\theta, \varphi) & =\frac{1}{4} \sqrt{\frac{5}{\pi}} \cdot\left(3 \cos ^{2} \theta-1\right) & & \frac{1}{4} \sqrt{\frac{5}{\pi}} \cdot \frac{\left(3 z^{2}-r^{2}\right)}{r^{2}} \\
Y_{2}^{1}(\theta, \varphi) & =-\frac{1}{2} \sqrt{\frac{15}{2 \pi}} \cdot e^{i \varphi} \cdot \sin \theta \cdot \cos \theta & & =-\frac{1}{2} \sqrt{\frac{15}{2 \pi}} \cdot \frac{(x+i y) \cdot z}{r^{2}} \\
Y_{2}^{2}(\theta, \varphi) & =\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \cdot e^{2 i \varphi} \cdot \sin ^{2} \theta & & \frac{1}{4} \sqrt{\frac{15}{2 \pi}} \cdot \frac{(x+i y)^{2}}{r^{2}}
\end{array}
$$

5. A neutral tritium atom $(\mathrm{Z}=1, \mathrm{~A}=3)$ has a mass of $2809.4321 \mathrm{MeV} / c^{2}$, while a neutral helium- 3 atom $(\mathrm{Z}=2$, $\mathrm{A}=3$) has a mass of $2809.4135 \mathrm{MeV} / c^{2}$. Use the measured masses to estimate the distance between the protons in tritium.
6. Many copies of a system of two spin-1/2 particles are prepared in an identical spin state given by:

$$
|\psi\rangle=a|\uparrow \uparrow\rangle+b|\uparrow \downarrow\rangle+c|\downarrow \uparrow\rangle+d|\downarrow \downarrow\rangle
$$

An experimenter performs many measurements of these identical systems, and finds the following results:

- If only the first spin is measured, the result is spin up with 30% probability.
- If only the second spin is measured, the result is spin up with 40% probability.
- If both spins are measured, the result is both spins up with 10% probability.

Derive the upper and lower limits on the probability that a measurement of the total spin of this state will yield zero.
7.

Consider a particle of mass m which at a particular instant of time, say $t=0$, has the wave-function

$$
\psi(x, y, z, t=0) \propto \sqrt{\frac{2}{\pi a^{3}}}\left(\frac{x}{r}+\frac{z}{r}\right) e^{-r / a}+\sqrt{\frac{80}{3 \pi a^{3}}} \frac{z^{2}}{r^{2}} e^{-2 r / a}
$$

where (x, y, z) are Cartesian coordinates of space and $r=\sqrt{x^{2}+y^{2}+z^{2}}$. If, at time zero, we simultaneously measure \vec{L}^{2} and L_{x}, what is the probability that the result of the measurement is $\vec{L}^{2}=2 \hbar^{2}$ and $L_{x}=0$.
8. To reduce interactions between charges confined in an $X Y$-plane at $z=0$, we can sandwich the $z=0$ plane with dielectric materials. Assume that the dielectric constant in the upper $(z>0)$ region is ϵ_{1}, and that it is ϵ_{2} for $z<0$. Find the reduced force between a charge Q at $(0,0,0)$ and a dipole moment, $p \hat{x}$, located at either point $(r, 0,0)$ or $(0, r, 0)$, both in the $z=0$ plane. Express your results for both point locations in terms of p, r, Q and the dielectric constants given above. Hint: the electric field produced by the charge at the origin will be in the radial direction everywhere.

