
Autumn 2017 Physics & Astronomy Qualifying Exam
for Advancement to Candidacy

Day 1: August 31, 2017

Do not write your name on the exam. Instead, write your student number on
each exam booklet. This will allow us to grade the exams anonymously. We’ll
match your name with your student number after we finish grading. If you use
extra exam booklets, write your student number on the extra exam books as
well. Write all answers in the blank exam booklet(s), not on this printout!

Today’s portion of the exam has 8 questions. Answer any five of the eight.
Do not submit answers to more than 5 questions—if you do, only the first 5 of
the questions you attempt will be graded. If you attempt a question and then
decide you don’t want to it count, clearly cross it out and write “don’t grade”.

You have 4 hours to complete 5 questions.

You are allowed to use one 8.5′′ × 11′′ formula sheet (both sides), and a
handheld, non-graphing calculator.

Here is a possibly useful table of physical constants and formulas:

absolute zero 0 K -273◦C
atomic mass unit 1 amu 1.66× 10−27 kg
Avogadro’s constant NA 6.02× 1023

Boltzmann’s constant kB 1.38× 10−23 J/K
charge of an electron e 1.6× 10−19 C
distance from earth to sun 1 AU 1.5× 1011 m

Laplacian in spherical coordinates ∇2f = 1
r
∂2

∂r2 (rf) + 1
r2 sin θ

∂
∂θ

(
sin θ ∂f∂θ

)
+ 1

r2 sin2 θ
∂2f
∂φ2

mass of an electron me 0.511 MeV/c2

mass of the sun Msun 2× 1030 kg
mass of a proton mp 938 MeV/c2

mass of a neutron mn 940 MeV/c2

mass of hydrogen atom mH 1.673× 10−27 kg
molecular weight of H2O 18
Newton’s gravitational constant G 6.7× 10−11 N m2 kg−2

nuclear magneton µN 5× 10−27 J/T
permittivity of free space ε0 8.9× 10−12 C2 N−1/m2

permeability of free space µ0 4π × 10−7 N/A2

Planck’s constant h 6.6× 10−34 J·s
radius of the Earth Rearth 6.4× 106 m
speed of light c 3.0× 108 m/s
Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4

Stirling’s approximation N ! e−NNN
√

2πN
Thomson cross section σT 6.65× 10−29 m2
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1. There is a theoretical limit to the luminosity that an object bound grav-
itationally can emit. This is called the Eddington luminosity Ledd and it is
reached when the inward gravitational force on a piece of material is balanced
by the outgoing radiation pressure. Consider a cloud of hydrogen surrounding
a central object of mass M and luminosity L. Let σT be the Thomson cross-
section (the cross-section for elastic scattering of photons on hydrogen) and mH

be the mass of a proton. Show that the maximum luminosity Ledd that the
central object can have and still not expel the cloud of hydrogen by radiation
pressure is given by

Ledd = 4πcGMmH/σT

Calculate Ledd for the Sun.
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2.

A. A quantum mechanical particle of massm, charge q, and zero spin moves in
two dimensions in a potential given, as a function of the polar coordinates
r and θ, by V (r, θ) = 1

2kr
2 + 3

2kr
2 sin2 θ. Calculate the energies and

degeneracies of the lowest 6 energy levels.

B. Now an electric field E is added along the θ = 45◦ direction. Calculate
the resulting shift in the energy levels from part A.
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3. “Tumour treating fields” is a novel medical treatment for brain cancer
that relies on applying low-intensity alternating electrical fields to the brain. It
is hypothesized that this therapy may act on tubulin protein assemblies, which
have a permanent electric dipole moment, by preventing them from orienting
properly during cell division and so slowing tumour growth. The treatment
is only effective if the frequency of the applied field is lower than the lowest
frequency at which the tubulin molecules rotate, since otherwise the field will
average to zero during the time it takes the dipole moment to reorient itself.

The tubulin complex has a mass of 110,000 amu, an electric dipole moment
of 40 e·nm, and dimensions of 4.6 × 8.0 × 6.5 nm. Do an order of magnitude
calculation of the approximate maximum frequency at which the electric field
should be applied.
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4. A reversible heat engine is built using a photon gas as the working
medium. At Point 1, the temperature of the gas and surrounding chamber
is Th and its volume is zero. The gas is slowly expanded isothermally until it
reaches volume V2. It then expands adiabatically to volume V3, at which point
its temperature is Tc. Next it contracts isothermally to volume zero. Finally
the system is heated at constant volume to return it to Point 1.

Draw a diagram of of this cycle in the PV plane. Then calculate the work
done, heat absorbed, and change in entropy of the gas during each of the four
steps of the cycle.

Hint: the internal energy of a photon gas is U = bV T 4, where b is a constant,
and for any ultra-relativistic gas U = 3PV .
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5.

A. A quantum particle in 1D is prepared in an state localized at x = 0, with
an initial position distribution given by a Gaussian of RMS width σ. The
potential is V (x) = 0 everywhere. Estimate the probability density of
such a particle at a later time t as a function of x.

B. The particle is then prepared in an equal amplitude superposition of two
spatially strongly localized states with widths σ � d peaked at −d/2 and
+d/2 at time t = 0. Estimate the probability density of such a particle at
a later time t, and comment explicitly on any interference effects that are
present.
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6. A tall, thin, vertical chimney of length h begins to topple over, as a rigid
unit, by pivoting from its base. When it has tipped by some angle θbreak, it
breaks, due to the internal torque exceeding the strength of the material which
is constant along its length. Determine the position x along the chimney, as
measured from its base, where it will break.
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7. Two oscillating dipole moments p1 and p2 are positioned on the x-axis
at positions x = ±L/2, and are oriented in the +z-direction. They oscillate in
phase and at the same angular frequency ω. Consider the radiation emitted in
the xz plane at polar angle θ relative to the z-axis.

Note that the electric field for a single radiating dipole in the far zone is
proportional to

~E ∝ [(n̂× ~p)× n̂]
eikr

r

where r is the distance from the dipole and n̂ is the normal vector pointing from
the dipole to the measurement position.

A. Find an expression for ~Erad in the far zone.

B. Use this to show that the differential radiated power obeys

dP

dΩ
∝ sin2 θ(p21 + 2p1p2 cos δ + p22)

and determine the value of the parameter δ.

C. Show that when L is much smaller than the wavelength of the radiation,
the radiation is the same as from a single oscillating dipole of amplitude
p1 + p2.
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8. In an NMR apparatus, a magnetic field of 10 T along the z-axis is used to
(partially) polarize the hydrogen nuclear spins in a sample of room temperature
water that is 1×1×1 cm3. The spins are quickly rotated into the x-y plane
using an AC field along the y-axis, and then the AC field is turned off and
the nuclear spins precess around the primary 10 T field. A 1000 turn coil with
radius 2 cm, with its axis also pointing along the y axis, surrounds the water
sample. Estimate the amplitude of the AC voltage induced in the coil due to the
precessing spins. Note that the proton’s magnetic moment is 1.4× 10−26 J/T,
and that the magnetic field of a dipole is given by

~B =
µ0

4π

(
3~r(~m · ~r)

r5
− ~m

r3

)
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Autumn 2017 Physics Qualifying Exam
for Advancement to Candidacy

Day 2: September 1, 2017

If you are in the Ph.D. in astronomy program, don’t write this exam! Ask a
proctor for the astronomy version of today’s exam!

Do not write your name on the exam. Instead, write your student number on
each exam booklet. This will allow us to grade the exams anonymously. We’ll
match your name with your student number after we finish grading. If you use
extra exam booklets, write your student number on the extra exam books as
well. Write all answers in the blank exam booklet(s), not on this printout!

Today’s portion of the exam has 8 questions. Answer any five of the eight.
Do not submit answers to more than 5 questions—if you do, only the first 5 of
the questions you attempt will be graded. If you attempt a question and then
decide you don’t want to it count, clearly cross it out and write “don’t grade”.

You have 4 hours to complete 5 questions.

You are allowed to use one 8.5′′ × 11′′ formula sheet (both sides), and a
handheld, non-graphing calculator.

Here is a possibly useful table of physical constants and formulas:

absolute zero 0 K -273◦C
atomic mass unit 1 amu 1.66× 10−27 kg
Avogadro’s constant NA 6.02× 1023

Boltzmann’s constant kB 1.38× 10−23 J/K
charge of an electron e 1.6× 10−19 C
distance from earth to sun 1 AU 1.5× 1011 m

Laplacian in spherical coordinates ∇2f = 1
r
∂2

∂r2 (rf) + 1
r2 sin θ

∂
∂θ

(
sin θ ∂f∂θ

)
+ 1

r2 sin2 θ
∂2f
∂φ2

mass of an electron me 0.511 MeV/c2

mass of a neutrino mν 0 MeV/c2

mass of the sun Msun 2× 1030 kg
mass of a proton mp 938.3 MeV/c2

mass of a neutron mn 939.6 MeV/c2

Newton’s gravitational constant G 6.7× 10−11 N m2 kg−2

nuclear magneton µN 5× 10−27 J/T
permittivity of free space ε0 8.9× 10−12 C2 N−1/m2

permeability of free space µ0 4π × 10−7 N/A2

Planck’s constant h 6.6× 10−34 J·s
radius of the Earth Rearth 6.4× 106 m
speed of light c 3.0× 108 m/s
Stefan-Boltzmann constant σ 5.67× 10−8 W m−2 K−4
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9. The wavefunction of the ground state of the hydrogen atom is

Ψ(r, θ, φ) =
1√
4π

2

a
3/2
0

e−r/a0

where a0 is the Bohr radius. This wavefunction was calculated in the approxi-
mation that the proton is a point particle. Suppose instead that the proton were
a sphere with uniform charge density and radius R� a0. How much would the
binding energy of the ground state shift compared to the point particle case?
You may leave your answer in the form of an integral.

12



10. Consider two spatially localized spin 1/2 particles, coupled by an ex-
change interaction, and immersed in an inhomogeneous magnetic field. They
can be described by the Hamiltonian

H = −J
[
S1
+S

2
− + S1

−S
2
+

]
− h1S1

z − h2S2
z

where the spin operators are normalized by[
Sai , S

b
j

]
= iδabεijkS

a
k

In this expression Sai is the spin operator for spin a in the ith Cartesian direction.
Find all of the eigenvalues of H.

Useful facts:
S± = Sx ± iSy

Sx =
1√
2

[
0 1
1 0

]
, Sy =

1√
2

[
0 −i
i 0

]
, Sz =

1√
2

[
1 0
0 −1

]
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11. The classical equation of motion of a system of identical particles with
positions ~x1, ...~xN interacting with a two-body potential is

m~̈xa(t) = −~∇a
∑
b6=a

V (|~xa − ~xb|)

This equation is clearly invariant under the boost transformation of Galilean
relativity,

~xa(t) → ~xa(t) + ~vt, ∀a = 1, . . . , N

This allows us to compare physics in different reference frames.
The quantum mechanical free particle is described by a wave-function ψ(~x1, ..., ~xN , t)

which obeys the Schrödinger equation

ih̄
∂

∂t
ψ(~x1, ..., ~xN , t) =

− N∑
a=1

h̄2~∇2

2m
+

1

2

∑
a 6=b

V (|~xa − ~xb|)

ψ(~x1, ..., ~xN , t)

A. Calculate the classical energy of the boosted system in terms of m, ~v, and
the energy E0 measured in the centre of mass frame.

B. Let ψCM (~x1, ..., ~xN , t) be the wavefunction in the centre of mass frame.
The wavefunction in a boosted frame, from the point of view of an observer
moving with constant velocity ~v, can be shown to have the form ψboost =
ψCMΦ( ~XCM , t), where ~XCM is the position of the centre of mass. Show

that ψboost satisfies the Schödinger equation and calculate Φ( ~XCM , t).

Hint: use your result from Part A to figure out the form of the kinetic energy
operator in the boosted frame, expressed in terms of ~xi and ~XCM .
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12. Consider a relativistic elastic collision between a photon with initial
energy Ei and an electron at rest. As a result of the collision the photon is now
moving at an angle θ relative to its initial direction. Calculate the final energy
of the photon.
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13. Consider a cylindrical container of volume V separated into two vol-
umes, v1 and v2 = V − v1, by a freely movable partition. The left volume v1
contains N monatomic molecules of mass mL and the right volume v2 contains
M monatomic molecules of mass mR. The partition allows heat to flow be-
tween the two volumes. The molecules are dilute enough that you can ignore
interactions and the system can be treated classically.

A. Assume that the system is in contact with a heat bath at temperature T ,
and that the external walls conduct heat. Compute the entropy of the
system as a function of v1. What is the equilibrium value of v1?

B. Now assume that the external walls but not the partition are completely
heat-insulating and that the total energy in the cylinder is E. What is
the equilibrium value of v1 in this case?

C. If the mass of the partition is 0.1 kg and the temperature is 300 K, what
is the mean square velocity of the partition in equilibrium?
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14. When the universe was very young, protons and neutrons could be
converted into each other by these reactions:

n+ e+ → ν̄e + p

n+ νe → p+ e−.

At times much earlier than one second after the Big Bang, these reactions were
fast and maintained the n : p ratio at close to 1 : 1. As the universe cooled,
the equilibrium shifted to favour protons due to their lower mass. The rate of
these reactions dropped precipitously when the universe reached a temperature
of 8 × 109 K, causing both reactions to effectively cease. Over the next few
minutes, about 20% of the neutrons decayed (n→ p+ e− + ν̄e), while the rest
were used to form helium-4 atoms. Estimate the ratio of the number of hydrogen
nuclei to helium nuclei in the universe at the end of this process.

17



15. The Breakthrough Starshot project proposes to use powerful lasers to
accelerate a lightweight space probe to a final velocity of 0.2c. Suppose the probe
has a mass of 10 g and has a 99% reflective solar sail with an area of 16 m2, and
that the laser shines on it for 10 minutes. Calculate the total amount of energy
that strikes the sail during the acceleration, assuming that the spacecraft starts
at rest.
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16. Find an approximate expression for the terminal velocity of a cylindrical
magnet, with diameter D and length also D, mass M , and magnetic moment
µ falling down the center of a very long vertically-oriented copper tube (resis-
tivity of copper is ρ) with radius R and wall thickness T . Make the following
assumptions:

A. the axis of the magnet stays aligned with the (vertical) axis of the tube

B. D � R and T � R

C. the terminal velocity is slow enough that self-inductance of the tube can
be ignored, as can air resistance

Note that the magnetic field of a dipole is given by

~B =
µ0

4π

(
3~r(~m · ~r)

r5
− ~m

r3

)
Hint: it’s OK to express your answer as a function of M , µ, R, and ρ times

a unitless definite integral. You don’t need to evaluate the numerical value of
that integral.
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