Quantum Control and Fault-tolerant quantum computing

Gerardo Paz, UCL Los Angeles
Event Date and Time: 
Wed, 2013-03-27 14:30 - 15:30
Hennings 309B
Local Contact: 
Robert Raussendorf
Intended Audience: 
Quantum control (QC) and the methods of fault-tolerant quantum computing (FTQC) are two of the cornerstones on which the hope for a quantum computer rests. However QC methods do not generally scale well with the size of the system, and it is not known how their performance is hindered when integration with FTQC methods, especially considering these demand a large system size overhead, is attempted under realistic noise models. Here we study this problem using dynamical decoupling in the bang-bang limit as a toy model, with a non-Markovian noise where interactions decay with distance, and show that there exists a (reasonable) regime of the norms of the relevant Hamiltonian terms, in which dynamical decoupling protected gates provide an advantage over the bare gate implementation. This is a first step towards showing that QC protocols designed for a small set of qubits can be extended to larger sets without a significant loss of performance, as long as the noise model behaves reasonably well.
Website development by Checkmark Media. Designed by Armada.

a place of mind, The University of British Columbia

Faculty of Science
Department of Physics and Astronomy
6224 Agricultural Road
Vancouver, BC V6T 1Z1
Tel 604.822.3853
Fax 604.822.5324

Emergency Procedures | Accessibility | Contact UBC | © Copyright The University of British Columbia