Induced Vacuum Decay by Topological Solitons

Manu Paranjape, Université de Montréal
Event Date and Time: 
Fri, 2015-10-16 11:00 - 12:00
Henn 318
Local Contact: 
Gordon Walter Semenoff
Intended Audience: 
We study the decay of the false vacuum mediated by meta-stable topological solitons. The symmetry broken vacuum is unstable to decay to the symmetry preserving vacuum via quantum tunnelling, but usually the rate of decay is very small. However, the existence of topological solitons can significantly enhance the disintegration rate. We consider monopoles, vortices and domain walls. Such solitons have an interior region where the symmetry is unbroken and an exterior region where the symmetry is broken. Normally, the interior region is energetically unstable while the symmetry broken exterior is stable. In the present case, these roles are reversed. We show how classically stable topological solitons could arise in this situation, and we show how to compute their decay through quantum tunnelling. The decay of the solitons of course provokes the decay of the entire false vacuum.
Website development by Checkmark Media. Designed by Armada.

a place of mind, The University of British Columbia

Faculty of Science
Department of Physics and Astronomy
6224 Agricultural Road
Vancouver, BC V6T 1Z1
Tel 604.822.3853
Fax 604.822.5324

Emergency Procedures | Accessibility | Contact UBC | © Copyright The University of British Columbia