Connecting Nuclear Astrophysics to Cosmological Structure Formation

Speaker: 
Benoit Cote (U Victoria/NCSL)
Event Date and Time: 
Thu, 2017-04-13 14:00 - 15:00
Location: 
TRIUMF Auditorium


Galactic chemical evolution is a multidisciplinary topic that involves nuclear physics, stellar evolution, galaxy evolution, and cosmology. Observations, experiments, and theories need to work together in order to build a comprehensive understanding of how the chemical elements synthesized in astronomical events are ejected and spread inside galaxies and recycled into new generations of stars. Nuclear physics provides nuclear reaction rates for nucleosynthesis calculations, stellar models provide the composition of stellar ejecta, galaxy models follow the evolution of chemical species driven by multiple stellar populations, cosmological simulations dictate how galaxies form and evolve in general, and observations provide constraints to test and improve numerical recipes driven by theories.

During this talk, I will introduce the topic of galactic chemical evolution and present our efforts to create permanent connections between different fields of research (including nucleosynthesis and gravitational wave physics). Our ultimate goal is to better understand the origin of the elements in the universe and to explain the diverse chemical evolution patterns observed in nearby galaxies.

Website development by Checkmark Media. Designed by Armada.

a place of mind, The University of British Columbia

Faculty of Science
Department of Physics and Astronomy
6224 Agricultural Road
Vancouver, BC V6T 1Z1
Tel 604.822.3853
Fax 604.822.5324

Emergency Procedures | Accessibility | Contact UBC | © Copyright The University of British Columbia