CONTENTS:

- 1) Program 1 in C (Blink)
- 2) Program 2 in C (Interrupt Example)
- 3) ADC example
- 4) Addressing Modes
- 5) Selected Assembly instructions
- 6) ADC10 register descriptions

Program 1 in C:

```
/*
 * PHYS319 Lab3 Timing example in C
 * Written by Ryan Wicks
 * 16 January 2012
 * This program is a C version of the assembly program that formed part of lab 2.
 * This is not the best way to implement timing, or to organize your code.
 * It is simply one way.
 * This will almost certainly not give exactly the same timing as the assembly
 * program from lab 2, and the output assembly will also be very different, even
 * though the task is similar.
 */
#include <msp430.h>
void main(void) {
      volatile unsigned int count; //You must declare your variables in C
  // notice the label volatile. What happens if you remove this label?
     WDTCTL = WDTPW + WDTHOLD;
                                    //Stop WDT
      P1DIR = 0x41;
                                    //Set P1 output direction
     P1OUT = 0 \times 01;
                                    //Set the output
      while (1) {
                                    //Loop forever
            count = 60000;
            while(count != 0) {
                                   //decrement
                 count--;
            }
            Plout = Plout ^ 0x41; //bitwise xor the output with 0x41
      }
}
```

Program 2 in C:

```
/*
 * PHYS319 Lab 3 Interrupt Example in C
* Written by Ryan Wicks
 * 16 Jan 2012
 *
 * This program is a C version of the assembly program that formed part of
 * lab 2.
 *
 *
 */
#include <msp430.h>
void main(void)
{
  WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
                   //C does not have a convenient way of
//representing numbers in binary; use hex instead
  P1DIR = 0xF7;
  Plout = 0x49;
  P1REN = 0 \times 08;
                                  //enable resistor
  Plie = 0x08;
                                     //Enable input at P1.3 as an interrupt
  BIS SR (LPM4 bits + GIE); //Turn on interrupts and go into the lowest
                               //power mode (the program stops here)
            //Notice the strange format of the function, it is an "intrinsic"
            //ie. not part of C; it is specific to this chipset
}
// Port 1 interrupt service routine
#pragma vector=PORT1 VECTOR
interrupt void PORT1 ISR(void)
                              //code goes here
{
                       // toggle the LEDS
// Clear P1.3 IFG. If you don't, it just happens again.
 Plout ^= 0 \times 41;
  P1OUT ^= 0x41;
P1IFG &= ~0x08;
}
```

ADC demo:

```
// MSP430G2x31 Demo - ADC10, Sample A1, AVcc Ref, Set P1.0 if > 0.75*AVcc
11
// Description: A single sample is made on A1 with reference to AVcc.
// Software sets ADC10SC to start sample and conversion - ADC10SC
// automatically cleared at EOC. ADC10 internal oscillator times sample (16x)
// and conversion.
11
11
             MSP430G2x31
11
           _____
//
       / | \setminus |
                 XIN|-
       11
                       --|RST
                    XOUT I
11
11
         |
11
          11
          11
           11
// input >---|P1.1/A1 P1.0|--> red Led onboard BIT0
11
          11
           P1.2|--> yellow Led
11
          P1.6|--> green Led onboard BIT6
11
11
// D. Dang
// Texas Instruments Inc.
#include "msp430.h"
void main(void)
{
                                // Stop WDT
 WDTCTL = WDTPW + WDTHOLD;
ADC10CTL0 = ADC10SHT_2 + ADC10ON;
                                  // ADC10ON
 ADC10CTL1 = INCH 1;
                                 // input Al
 ADC10AE0 |= 0 \times 02;
                                 // PA.1 ADC option select
 P1DIR |= 0 \times 01;
                                  // Set P1.0 to output direction
 for (;;)
 {
  ADC10CTL0 |= ENC + ADC10SC; // Sampling and conversion start while (ADC10CTL1 &ADC10BUSY); // ADC10BUSY?
  ADC10CTL0 |= ENC + ADC10SC;
   if (ADC10MEM < 0x2FF)
    Plour \&= ~0 \times 01;
                                 // Clear P1.0 LED off
   else
   Plour \mid = 0 \times 01;
                                 // Set P1.0 LED on
  unsigned i;
   }
}
```


Addressing Modes

www.ti.com	

As/Ad	Addressing Mode	Syntax	Description
00/0	Register mode	Rn	Register contents are operand
01/1	Indexed mode	X(Rn)	(Rn + X) points to the operand. X is stored in the next word.
01/1	Symbolic mode	ADDR	(PC + X) points to the operand. X is stored in the next word. Indexed mode $X(PC)$ is used.
01/1	Absolute mode	&ADDR	The word following the instruction contains the absolute address. X is stored in the next word. Indexed mode X(SR) i used.
10/-	Indirect register mode	@Rn	Rn is used as a pointer to the operand.
11/-	Indirect autoincrement	@Rn+	Rn is used as a pointer to the operand. Rn is incremented afterwards by 1 for .B instructions and by 2 for .W instruction
11/-	Immediate mode	#N	The word following the instruction contains the immediate constant N. Indirect autoincrement mode @PC+ is used.

The seven addressing modes are explained in detail in the following sections. Most of the examples show the same addressing mode for the source and destination, but any valid combination of source and destination addressing modes is possible in an instruction.

NOTE: Use of Labels EDE, TONI, TOM, and LEO

Throughout MSP430 documentation EDE, TONI, TOM, and LEO are used as generic labels. They are only labels. They have no special meaning.

3.4.6.4 AND

AND[.W]	Source AND destination									
AND.B	Source A	Source AND destination								
Syntax	AND src, AND.B si	AND src,dst or AND.W src,dst AND.B src,dst								
Operation	src .AND	. dst \rightarrow dst								
Description	The sour placed in	The source operand and the destination operand are logically ANDed. The result is placed into the destination.								
Status Bits	N: Set if	result MSB is se	et, re	set if not set						
	Z: Set if r	result is zero, res	set o	otherwise						
	C: Set if	result is not zero	o, re	set otherwise (= .NOT. Zero)						
	V: Reset									
Mode Bits	OSCOFF	, CPUOFF, and	GIE	are not affected.						
Example The bits set in R5 are used as a mask (#0AA55h) for t result is zero, a branch is taken to label TONI				s a mask (#0AA55h) for the word addressed by TOM. If the en to label TONI.						
	MOV	#0AA55h,R5	; I	oad mask into register R5						
	AND	R5,TOM	; m	ask word addressed by TOM with R5						
	JZ	TONI	;							
	· · · · · · · · · · · ·		; F	esult is not zero						
	;									
	; or									
	;									
	;									
	AND	#0AA55h,TOM								
	JΖ	TONI								
Example	The bits of a branch	of mask #0A5h a is taken to labe	are I I TO	ogically ANDed with the low byte TOM. If the result is zero, NI.						
	AND.B	#0A5h,TOM	;	mask Lowbyte TOM with 0A5h						
	JZ	TONI	;							
			:	Result is not zero						

Instruction Set

3.4.6.25 JEQ, JZ

JEQ, JZ	Jump if equal, jump if zero								
Syntax	JEQ label JZ label								
Operation	If Z = 1: PC + 2 offset \rightarrow PC If Z = 0: execute following instruction								
Description	The status register zero bit (Z) is tested. If it is set, the 10-bit signed offset contained in the instruction LSBs is added to the program counter. If Z is not set, the instruction following the jump is executed.								
Status Bits	Status bits are not affected.								
Example	Jump to address TONI if R7 contains zero.TSTR7; Test R7JZTONI; if zero: JUMP								
Example	Jump to address LEO if R6 is equal to the table contents.CMPR6,Table(R5); Compare content of R6 with content of ; MEM (table address + content of R5)JEQLEO; Jump if both data are equal; No, data are not equal, continue here								
Example	Branch to LABEL if R5 is 0. TST R5 JZ LABEL 								

3.4.6.28 JMP

JMP	Jump unconditionally
Syntax	JMP label
Operation	$PC + 2 \times offset \rightarrow PC$
Description	The 10-bit signed offset contained in the instruction LSBs is added to the program counter.
Status Bits	Status bits are not affected.
Hint	This one-word instruction replaces the BRANCH instruction in the range of -511 to $+512$ words relative to the current program counter.

Instruction Set

3.4.6.31 JNE, JNZ

JNE	Jump if not equal						
JNZ	Jump if not zero						
Syntax	JNE label JNZ label						
Operation	If Z = 0: PC + 2 a offset \rightarrow PC If Z = 1: execute following instruction						
Description	The status register zero bit (Z) is tested. If it is reset, the 10-bit signed offset contained ir the instruction LSBs is added to the program counter. If Z is set, the next instruction following the jump is executed.						
Status Bits	Status bits are not affected.						
Example	Jump to address TONI if R7 and R8 have different contents. CMP R7,R8 ; COMPARE R7 WITH R8 JNE TONI ; if different: jump ; if equal, continue						

3.4.6.32 MOV

MOV[.W]	Move source to destination								
MOV.B	Move se	Move source to destination							
Syntax	MOV sro MOV.B	c,dst src,dst	or MOV.W src,dst						
Operation	$\mathrm{src} \rightarrow \mathrm{d}$	st							
Description	The sou	irce ope	rand is moved to the destina	atio	n.				
	The sou	irce ope	rand is not affected. The pre	evic	ous contents of the destination are lost.				
Status Bits	Status k	oits are i	not affected.						
Mode Bits	OSCOF	F, CPU	OFF,and GIE are not affecte	ed.					
Example	The contents of table EDE (word data) are copied to table TOM. The length of the tables must be 020h locations.								
	Loop	MOV MOV DEC JNZ	#EDE,R10 #020h,R9 @R10+,TOM-EDE-2(R10) R9 Loop	;;;;;;;	Prepare pointer Prepare counter Use pointer in R10 for both tables Decrement counter Counter not 0, continue copying Copying completed				
Example	The cor should l	ntents of De 020h	table EDE (byte data) are c locations	opi	ed to table TOM. The length of the tables				
		MOV MOV	#EDE,R10 #020b.R9	;	Prepare pointer Prepare counter				
	Loop	MOV.B	@R10+,TOM-EDE-1(R10)	; ;	Use pointer in R10 for both tables				
		DEC	R9	;	Decrement counter				
		JNZ	Loop	;;	Counter not 0, continue copving				
					Copying completed				
		• • • • • •		'	coping compreted				
		• • • • • •							

Instruction Set

3.4.6.51 XOR

www.ti.com

XOR[.W]	Exclusive OR of source with destination									
XOR.B	Exclusive OR of source with destination									
Syntax	XOR src,dst or XOR.W src,dst XOR.B src,dst									
Operation	src .XOR. dst \rightarrow dst									
Description	The source and destination operands are exclusive ORed. The result is placed into the destination. The source operand is not affected.									
Status Bits	N: Set if result MSB is set, reset if not set									
	Z: Set if result is zero, reset otherwise									
	C: Set if result is not zero, reset otherwise (= .NOT. Zero)									
	V: Set if both operands are negative									
Mode Bits	OSCOFF, CPUOFF, and GIE are not affected.									
Example	The bits set in R6 toggle the bits in the RAM word TONI.									
	XOR R6,TONI ; Toggle bits of word TONI on the bits set in R6									
Example	The bits set in R6 toggle the bits in the RAM byte TONI. XOR.B R6,TONI ; Toggle bits of byte TONI on the bits set in ; low byte of R6									
Example	Reset to 0 those bits in low byte of R7 that are different from bits in RAM byte EDE.XOR.BEDE,R7; Set different bit to "1s"INV.BR7; Invert Lowbyte, Highbyte is 0h									

22.3.1 ADC10CTL0, ADC10 Control Register 0

15	14		13	12	11	10	9	8
	SREFx			ADC10	OSHTx	ADC10SR	REFOUT	REFBURST
rw-(0)	rw-(0)		rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
7	6		5	4	3	2	1	0
MSC	REF2_5	V	REFON	ADC10ON	ADC10IE	ADC10IFG	ENC	ADC10SC
rw-(0)	rw-(0)		rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
	Can be mod	lified only	y when ENC =	0				
SREFx	Bits 15-13	Select	reference.					
		000	$V_{R+} = V_{CC}$ and	$d V_{R} = V_{SS}$				
		001	$V_{R+} = V_{REF+} a$	nd $V_{R} = V_{SS}$				
		010	$V_{R+} = V_{eREF+}$ a	and $V_{R} = V_{SS}$. Dev	vices with V_{eREF+} o	nly.		
		011	$V_{R+} = Buffere$	d V_{eREF+} and V_{R-} =	V _{SS} . Devices with	n V _{eREF+} pin only.		
		100	$V_{R+} = V_{CC}$ and	$V_{R-} = V_{REF-} / V_{eREF}$. Devices with V _e	_{PREF-} pin only.		
		101	$V_{R+} = V_{REF+} a$	nd $V_{R-} = V_{REF-} / V_{eR}$	EF Devices with \	/ _{eREF+/-} pins only.		
		110	$V_{R+} = V_{eREF+}$ a	and $V_{R-} = V_{REF} / V_{el}$	REF Devices with	$V_{eREF+/-}$ pins only.		
		111	$V_{R+} = Buffere$	d V_{eREF+} and V_{R-} =	V_{REF} / V_{eREF} . Dev	ices with $V_{eREF+/-}$ pir	is only.	
ADC10SHTx	Bits 12-11	ADC10) sample-and-h	old time				
		00	4 × ADC10C	LKs				
		01	8 × ADC10C	LKs				
		10	16 × ADC100	CLKs				
		11	64 × ADC100					
ADC10SR	Bit 10	ADC10 Setting	ADC10SR rec	. This bit selects t luces the current	the reference buff consumption of the the term of	er drive capability f ne reference buffer.	or the maximum	sampling rate.
		0	Reference bu	uffer supports up t	to ~200 ksps			
		1	Reference bu	uffer supports up t	to ~50 ksps			
REFOUT	Bit 9	Refere	nce output					
		0	Reference ou	utput off				
		1	Reference ou	tput on. Devices	with V_{eREF+} / V_{REF+}	pin only.		
REFBURST	Bit 8	Refere	nce burst.					
		0	Reference bu	uffer on continuou	sly			
		1	Reference bu	Iffer on only durin	g sample-and-co	nversion		
MSC	Bit 7	Multiple	e sample and o	conversion. Valid	only for sequence	e or repeated mode	S.	
		0	The sampling requires a rising edge of the SHI signal to trigger each sample-and-conversion					
		1	Conversions	g edge of the SH are performed aut	tomatically as soc	on as the prior conv	out further sample	ed
REF2_5V	Bit 6	Refere	nce-generator	voltage. REFON I	must also be set.			
		0	1.5 V					
		1	2.5 V					
REFON	Bit 5	Refere	nce generator	on				
		0	Reference of	f				
		1	Reference or	ו				
ADC100N	Bit 4	ADC10) on					
		0	ADC10 off					
		1	ADC10 on					
ADC10IE	Bit 3	ADC10) interrupt enab	ole				
		0	Interrupt disa	bied				
	1 Interrupt enabled							

TEXAS INSTRUMENTS

ADC10 Regis	ters	www.ti.com
ADC10IFG	Bit 2	ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically reset when the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is set when a block of transfers is completed.
		0 No interrupt pending
		1 Interrupt pending
ENC	Bit 1	Enable conversion
		0 ADC10 disabled
		1 ADC10 enabled
ADC10SC	Bit 0	Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set together with one instruction. ADC10SC is reset automatically.
		0 No sample-and-conversion start
		1 Start sample-and-conversion

13 9 8 15 14 12 10 11 **INCHx** SHSx ADC10DF ISSH rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) 7 6 5 4 3 2 0 1 ADC10SSELx ADC10DIVx CONSEQx ADC10BUSY rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) r-0 Can be modified only when ENC = 0 **INCHx** Input channel select. These bits select the channel for a single-conversion or the highest channel for a Bits 15-12 sequence of conversions. Only available ADC channels should be selected. See device specific data sheet. 0000 A0 0001 A1 0010 A2 0011 A3 0100 A4 0101 A5 0110 A6 0111 Α7 1000 V_{eREF+} 1001 V_{REF}/V_{eREF}. 1010 Temperature sensor 1011 (V_{CC} - V_{SS}) / 2 1100 (V_{CC} - V_{SS}) / 2, A12 on MSP430F22xx devices (V_{CC} - V_{SS}) / 2, A13 on MSP430F22xx devices 1101 1110 (V_{CC} - V_{SS}) / 2, A14 on MSP430F22xx devices 1111 (V_{CC} - V_{SS}) / 2, A15 on MSP430F22xx devices SHSx Bits 11-10 Sample-and-hold source select. ADC10SC bit 00 01 Timer_A.OUT1⁽¹⁾ Timer_A.OUT0⁽¹⁾ 10 Timer_A.OUT2 (Timer_A.OUT1 on MSP430F20x0, MSP430G2x31, and MSP430G2x30 devices)⁽¹⁾ 11 ADC10DF Bit 9 ADC10 data format Straight binary 0 1 2s complement ISSH Bit 8 Invert signal sample-and-hold 0 The sample-input signal is not inverted. The sample-input signal is inverted. 1 ADC10DIVx Bits 7-5 ADC10 clock divider 000 /1 001 /2 010 /3 011 /4 100 /5 101 /6 110 /7 111 /8 ADC10SSELx Bits 4-3 ADC10 clock source select 00 ADC10OSC 01 ACLK MCLK 10 11 SMCLK

22.3.2 ADC10CTL1, ADC10 Control Register 1

⁽¹⁾ Timer triggers are from Timer0_Ax if more than one timer module exists on the device.

ADC10 Regist	ers			www.ti.co		
CONSEQx	Bits 2-1	Conv	Conversion sequence mode select			
		00	Single-channel-single-conversion			
		01	Sequence-of-channels			
		10	Repeat-single-channel			
		11	Repeat-sequence-of-channels			
ADC10BUSY	Bit 0	ADC	10 busy. This bit indicates an active sample or conversion operation			
		0	No operation is active.			
		1	A sequence, sample, or conversion is active.			

22.3.3 ADC10AE0, Analog (Input) Enable Control Register 0

7	6	5	4	3	2	1	0				
	ADC10AE0x										
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)				
ADC10AE0x	Bits 7-0	ADC10 analog enable. These bits enable the corresponding pin for analog input. BIT0 corresponds to A BIT1 corresponds to A1, etc. The analog enable bit of not implemented channels should not be program to 1.									
		0 Analog input	t disabled								
		1 Analog input	t enabled								

22.3.4 ADC10AE1, Analog (Input) Enable Control Register 1 (MSP430F22xx only)

7	6	5	4	3	2	1	0			
	Α	DC10AE1x			Resei	rved				
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)			
ADC10AE1x	Bits 7-4	ADC10 analog enable BIT5 corresponds to not implemented cha	ADC10 analog enable. These bits enable the corresponding pin for analog input. BIT4 corresponds to A12, BIT5 corresponds to A13, BIT6 corresponds to A14, and BIT7 corresponds to A15. The analog enable bit of not implemented channels should not be programmed to 1.							
		0 Analog input disabled								
		1 Analog input	enabled							
Reserved	Bits 3-0	Reserved								

22.3.5 ADC10MEM, Conversion-Memory Register, Binary Format

15	14	13	12	11	10	9	8		
0	0	0	0	0	0	Conversion Results			
rO	rO	rO	rO	rO	rO	r	r		
7	6	5	4	3	2	1	0		
Conversion Results									
r	r	r	r	r	r	r	r		
Conversion Results	Bits 15-0	The 10-bit conversion always 0.	n results are right	justified, straight-b	binary format. Bit 9	is the MSB. Bits	15-10 are		

22.3.6	ADC10MEM,	Conversion-I	Memory Re	egister, 2	2s Com	plement	Format
--------	-----------	--------------	-----------	------------	--------	---------	--------

15	14	13	12	11	10	9	8			
Conversion Results										
r	r	r	r	r	r	r	r			
7	6	5	4	3	2	1	0			
Convers	sion Results	0	0	0	0	0	0			
r	r	rO	rO	rO	r0	rO	r0			
Conversion Results	Bits 15-0	The 10-bit conversion 0.	n results are left-ju	ustified, 2s comple	ement format. Bit 1	5 is the MSB. Bits	s 5-0 are always			

22.3.7 ADC10DTC0, Data Transfer Control Register 0

7	6		5	4	3	2	1	0			
Reserved					ADC10TB	ADC10CT	ADC10B1	ADC10FETCH			
r0	r0		r0	rO	rw-(0)	rw-(0)	r-(0)	rw-(0)			
Reserved	Bits 7-4	Reserv	Reserved. Always read as 0.								
ADC10TB	Bit 3	ADC10	two-block mo	ode							
		0	One-block tr	ansfer mode							
		1	Two-block tr	ansfer mode							
ADC10CT	Bit 2	ADC10	continuous tr	ansfer							
		0	Data transfer stops when one block (one-block mode) or two blocks (two-block mode) have completed.								
		1	Data is trans is written to.	ferred continuous	ly. DTC operation	is stopped only if	ADC10CT cleare	ed, or ADC10SA			
ADC10B1	Bit 1	ADC10 ADC10 also be	ADC10 block one. This bit indicates for two-block mode which block is filled with ADC10 conversion results. ADC10B1 is valid only after ADC10IFG has been set the first time during DTC operation. ADC10TB must also be set.								
		0	Block 2 is fil	led							
		1	Block 1 is fil	led							
ADC10FETCH	Bit 0	This bit	should norm	ally be reset.							

22.3.8 ADC10DTC1, Data Transfer Control Register 1

7	6	Ę	5 4	. 3	2	1	0		
				DTC Transfers					
rw-(0)	rw-(0)	rw-	(0) rw-((0) rw-(0)) rw-((0) rw-(0) rw-(0)		
DTC Transfers	Bits 7-0	DTC transfe	DTC transfers. These bits define the number of transfers in each block.						
		0	DTC is disabled						
	01h-0FFh Number of transfers per block								

22.3.9 ADC10SA, Start Address Register for Data Transfer

15	14	13	12	11	10	9	8				
ADC10SAx											
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)				
7	6	5	4	3	2	1	0				
	ADC10SAx										
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rO				
ADC10SAx	Bits 15-1	ADC10 start address to initiate DTC transfer	ADC10 start address. These bits are the start address for the DTC. A write to register ADC10SA is required to initiate DTC transfers.								
Unused	Bit 0	Unused, Read only. Always read as 0.									