

Midterm Solutions

1. For each of the following C language expressions, assumed to be issued
one after another, provide the values, in BOTH hexadecimal AND
binary, of the variable x (which is an unsigned char).

HEXADECIMAL BINARY

a) x = 72; x &= ~255 0x_0_____ 0b_0_____________

b) x = 37; x |= -1; 0x_FF____ 0b_11111111_______

c) x = 9 >> 3; 0x_1_____ 0b__1____________

d) x = 57/6; 0x_09____ 0b__00001001_____

2. Below is the assembly code produced by a compiler from a short C program
for an MSP430 Launchpad. Examine the assembly code and 1) add
comments to each line of code to explain the function; 2) Explain in a
sentence or two what the program does (hint: 23168 = WDTPW +
WDTHOLD).

main:
 mov #23168, &__WDTCTL ; disable watchdog timer
 mov.b #1, &__P1DIR ; set P1.0 as output, P1.1-1.7 as inputs
.L9:
 mov.b &__P1IN, r15 ; read P1IN, store in register R15
 and #8, r15 ; test bit 3, check if P1.3 was high
 jne .L9 ; if P1.3 was high, loop to .L9
.L6:
 mov.b &__P1IN, r15 ; read P1IN, store in register R15
 and #8, r15 ; test bit 3, check if P1.3 was high
 jeq .L6 ; if P1.3 was low, loop to .L6
 xor.b #1, &__P1OUT ; toggle P1.0 output
 jmp .L9 ; loop back to .L9

The program disables the watchdog timer, configures P1.0 as an output,
then detects low-> high transitions on P1.3. On each low->high transition,
the P1.0 output is toggled.

“Usefulness” of comments:

set WDTCTL to 23168 vs disable watchdog timer

logical and of 8 and r15 vs test if bit 3 of P1IN (P1.3) was high

These are self-evident, These help you understand what the code
not worth writing is doing.

mov.b &__P1IN,r15
 and #8, r15
 jne .L9

The and will set the Z and C bits in the status register:
if the result of the and is zero, Z is set and C is reset.
Otherwise Z is reset, C is set.

jne == jnz jumps if the zero bit is reset – here it jumps if the
result of the and was not zero, so it jumps if P1.3 was high.

This was the code I got by compiling “Activity 4:”

#include <msp430.h>
int main(void){

WDTCTL = WDTPW + WDTHOLD;
P1DIR = 1; // P1.0 output, all others input

while(1){
while (P1IN & 8);
while (! (P1IN & 8));
P1OUT ^= 1;

}
}

This was the code I got by compiling “Activity 4”

#include <msp430.h>
int main(void){

WDTCTL = WDTPW + WDTHOLD;
P1DIR = 1; // P1.0 output, all others input

while(1){
while (P1IN & 8);
while (! (P1IN & 8));
P1OUT ^= 1;

}
}

loops here while P1.3 is high

loops here while P1.3 is low

proceeds from here on low->
high transition

3.Write a complete, well annotated program in C, that will operate the
MSP430G2553 as a stand-alone parallel-output ADC. Pin P1.1 is a trigger input:
a high to low transition detected on this pin should cause the program to read the
analog voltage value on P1.0, and then place the digital result on pins P1.2-1.7
and P2.0-P2.3. It uses P2.4 as a 'data valid' flag. P2.4 is low when the values on
the output pins have been set.
The program should begin by configuring necessary registers (eg P1DIR,
ADC10CTL0 etc), then it should set P2.4 to High to indicate that the output pins
do not have any meaning, and put the CPU to sleep until awoken by a high to low
transition on pin P1.1 triggering an interrupt.
The interrupt handler should:
a) set P2.4 High
b) use the ADC10 to read the analog voltage applied to pin P1.0,
c) place the 4 most significant bits of the ADC result on P2.0-P2.3 (P2.3 is most
significant), and the lower 6 bits on pins P1.2-P1.7.
d) set P2.4 Low to indicate that the output values have been set.
e) exit until the next interrupt call the handler again.

The C programs that we examined in the first four weeks of lab sessions are in
the reference package. Feel free to write on the back if necessary.

The program should begin by configuring necessary registers (eg P1DIR,
ADC10CTL0 etc), then it should set P2.4 to High to indicate that the output pins do
not have any meaning, and put the CPU to sleep until awoken by a high to low
transition on pin P1.1 triggering an interrupt.

#include <msp430.h>
void main(void){

WDTCTL=WDTPW+WDTHOLD; // disable watchdog timer
P1DIR = 0xFC; // P1.0 and 1.1 inputs, rest outputs
P2DIR= 0x1F; // P2.0-2.4 outputs
ADC10CTL0 = ADC10SHT_2 + ADC10ON; // turn on ADC, set sample/hold time
ADC10CTL1 = INCH_0; // set ADC MUX so ADC samples from A0 = P1.0
ADCAE0 |= 0x01; // enable A0 input
P1IE=0x02; // enable interrupt on P1.1 H->L transition
P2OUT |= 0x10; // set P2.4 high to indicate invalid data
_BIS_SR(LPM4_bits +GIE); // put cpu to sleep with interrupts enabled

}

The interrupt handler should:
a) set P2.4 High
b) use the ADC10 to read the analog voltage applied to pin P1.0,
c) place the 4 most significant bits of the ADC result on P2.0-P2.3 (P2.3 is most
significant), and the lower 6 bits on pins P1.2-P1.7.
d) set P2.4 Low to indicate that the output values have been set.
e) exit until the next interrupt call the handler again.

#pragma vector = PORT1_VECTOR // port 1 interrupts come here
__interrupt void isr(void){

P2OUT |= 0x10; // set P2.4 high to indicate invalid data on outputs
P1IFG &= ~2; // reset interrupt flag
ADC10CTL0 |=ENC+ADC10SC; // trigger ADC to make measurement
while (ADC10CTL1 & ADC10BUSY); // loop till ADC is finished
P1OUT = ADC10MEM<<2; // write low 6 bits of result to P1.2-P1.7
P2OUT = (ADC10MEM >> 6 | 0x10); // write high 4 bits of result to P2.0-P2.3

 // keep P2.4 high for now
P2OUT &=~0x10; // reset P2.4 to indicate valid data.

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

