
Today's Plan:

Announcements

Review Activities 1&2

Programming in C

Using peripherals on the MSP430 (if time)

Activity 3

Announcements:

● Midterm coming on Feb 9. Will need to write simple
programs in C and/or assembler for MSP430, you will
need to extract information from data sheets (which I
will provide), and will need to analyze/explain code
samples. See examples on web site from previous
years.

Announcements:

● Projects: should be starting to think about. You will need to provide a short
written description (eg 1/2 page) of what you plan to assemble/build, and what
parts you will require. Bring ideas to the lab next week! Submit 1/2 page in
the lab Jan 30 – Feb 3.

● Project Scope: Your project must use the MSP430 as a central component.
Your project should incorporate at least one non-trivial external hardware
component (sensor, motor, display etc). Your project may (but is not required)
to communicate with a host computer for display or user interaction.

● Parts: We have access to many electronic components, some mechano and
many motors and sensors that you may borrow for your project. Who pays for
parts that need to be acquired will depend on what the parts are, who gets to
keep them, and their price.

Activity 1
• Write commands which will configure all pins of port

1 as inputs, and move the value from port 1 to register
R7. Write the binary number which will be in the 16 bit
register R7 after these operations assuming that the
pins of port 1 were connected to 3V.

• Port P1 registers:

• P1REN ; Port P1 resistor enable

• P1SEL ; Port P1 selection

• P1DIR ; Port P1 direction

• P1OUT ; Port P1 output

• P1IN ; Port P1 input

Activity 1
• Write commands which will configure all pins of port

1 as inputs, and move the value from port 1 to register
R7. Write the binary number which will be in the 16 bit
register R7 after these operations assuming that the
pins of port 1 were connected to 3V.

mov.b 0x00, &P1DIR
mov.b &P1IN, R7

R7 = 0xXXFF

unknown?

mov.b used so as to write to only
P1DIR and not to P1DIR and whatever
is next in memory (P1IFG).

mov.b used to copy only P1IN,
and not also whatever is next in
memory (P2OUT).

Activity 2

What are the values of R7 and the
 Z, N, and C bits after the following commands
(assuming they were all 0 initially)

Z = 0 N = 0 C = 0 R7 = 0
mov.w #0xF0F0, R7 Z = ? N = ? C = ? R7 = ?
add.w #0xF000, R7 Z = ? N = ? C = ? R7 = ?
sub.w #0xE0F0, R7 Z = ? N = ? C = ? R7 = ?

Activity 2

What are the values of R7 and the
 Z, N, and C bits after the following commands
(assuming they were all 0 initially)

Z = 0 N = 0 C = 0 R7 = 0
mov.w #0xF0F0, R7 Z = 0 N = 0 C = 0 R7 = 0xF0F0
add.w #0xF000, R7 Z = ? N = ? C = ? R7 = ?
sub.w #0xE0F0, R7 Z = ? N = ? C = ? R7 = ?

mov doesn't touch the status bits

Activity 2

What are the values of R7 and the
 Z, N, and C bits after the following commands
(assuming they were all 0 initially)

Z = 0 N = 0 C = 0 R7 = 0
mov.w #0xF0F0, R7 Z = 0 N = 0 C = 0 R7 = 0xF0F0
add.w #0xF000, R7 Z = 0 N = 1 C = 1 R7 = 0xE0F0
sub.w #0xE0F0, R7 Z = ? N = ? C = ? R7 = ?

0xE0F0 is negative (if interpreted as signed)

Activity 2

What are the values of R7 and the
 Z, N, and C bits after the following commands
(assuming they were all 0 initially)

Z = 0 N = 0 C = 0 R7 = 0
mov.w #0xF0F0, R7 Z = 0 N = 0 C = 0 R7 = 0xF0F0
add.w #0xF000, R7 Z = 0 N = 1 C = 1 R7 = 0xE0F0
sub.w #0xE0F0, R7 Z = 1 N = 0 C = 1 R7 = 0x0000

The carry bit is set because of the way the subtraction is
done. Subtraction is done by adding the inverse of the first
operand, plus one. The carry bit is set if there is a carry from the addition.

include header file, similar
to .include in assembly.
Defines symbols like P1OUT

Programming in C

#include <msp430.h>

volatile unsigned int i=0;
int main(void)
{

WDTCTL = WDTPW + WDTHOLD;
P1DIR |= 0x41;

for(;;){
for (i = 0 ; i < 20000 ; i++){

if (i == 0)
P1OUT ^= 0x01;

if (i == 6000)
P1OUT ^= 0x40;

}
}

}

Declare a global variable.
Global variables can be used anywhere
in the program. The volatile keyword tells
the compiler that the variable might
change unexpectedly (eg in an interrupt)
so it should store the variable in
RAM, not just in a register.

Programming in C

#include <msp430.h>

volatile unsigned int i=0;
int main(void)
{

WDTCTL = WDTPW + WDTHOLD;
P1DIR |= 0x41;

for(;;){
for (i = 0 ; i < 20000 ; i++){

if (i == 0)
P1OUT ^= 0x01;

if (i == 6000)
P1OUT ^= 0x40;

}
}

}

A variable declared within
a set of braces can only
be accessed within those
braces.

Every C program must have a routine
called main. The compiler generates the
code necessary for the address of the
main routine to go into the reset vector.
The (void) says that no parameters are
passed to the function.

Programming in C

#include <msp430.h>

volatile unsigned int i=0;
int main(void)
{

WDTCTL = WDTPW + WDTHOLD;
P1DIR |= 0x41;

for(;;){
for (i = 0 ; i < 20000 ; i++){

if (i == 0)
P1OUT ^= 0x01;

if (i == 6000)
P1OUT ^= 0x40;

}
}

}

These look like ordinary C assignments,
but the symbol names are special
values defined in the include file.

Programming in C

#include <msp430.h>

volatile unsigned int i=0;
int main(void)
{

WDTCTL = WDTPW + WDTHOLD;
P1DIR |= 0x41;

for(;;){
for (i = 0 ; i < 20000 ; i++){

if (i == 0)
P1OUT ^= 0x01;

if (i == 6000)
P1OUT ^= 0x40;

}
}

}

Turn on the bits to ensure that
P1.6 and P1.0 are outputs.
|= is an operator. This statement
Is equivalent to:
P1DIR = P1DIR | 0x41;
where | is the bitwise OR
operation.

Programming in C

#include <msp430.h>

volatile unsigned int i=0;
int main(void)
{

WDTCTL = WDTPW + WDTHOLD;
P1DIR |= 0x41;

for(;;){
for (i = 0 ; i < 20000 ; i++){

if (i == 0)
P1OUT ^= 0x01;

if (i == 6000)
P1OUT ^= 0x40;

}
}

}

Programming in C

#include <msp430.h>

volatile unsigned int i=0;
int main(void)
{

WDTCTL = WDTPW + WDTHOLD;
P1DIR |= 0x41;

for(;;){
for (i = 0 ; i < 20000 ; i++){

if (i == 0)
P1OUT ^= 0x01;

if (i == 6000)
P1OUT ^= 0x40;

}
}

}

for(initialization ; condition ; increment expression)

Programming in C

#include <msp430.h>

volatile unsigned int i=0;
int main(void)
{

WDTCTL = WDTPW + WDTHOLD;
P1DIR |= 0x41;

for(;;){
for (i = 0 ; i < 20000 ; i++){

if (i == 0)
P1OUT ^= 0x01;

if (i == 6000)
P1OUT ^= 0x40;

}
}

}

Test if i is 0. Note that
equality is tested with ==
A single = is an assignment.

if (i = 0) is “valid” code, but
probably doesn't do what you
want!

This is equivalent to
P1OUT = P1OUT ^ 0x01;

Programming in C

#include <msp430.h>

volatile unsigned int i=0;
int main(void)
{

WDTCTL = WDTPW + WDTHOLD;
P1DIR |= 0x41;

for(;;){
for (i = 0 ; i < 20000 ; i++){

if (i == 0)
P1OUT ^= 0x01;

if (i == 6000)
P1OUT ^= 0x40;

}
}

}

note ; at ends of
statements.

Programming in C

#include <msp430.h>

volatile unsigned int i=0;
int main(void)
{

WDTCTL = WDTPW + WDTHOLD;
P1DIR |= 0x41;

for(;;){
for (i = 0 ; i < 20000 ; i++){

if (i == 0)
P1OUT ^= 0x01;

if (i == 6000)
P1OUT ^= 0x40;

}
}

}

but no ;'s here

Programming in C

#include <msp430.h>

volatile unsigned int i=0;
int main(void)
{

WDTCTL = WDTPW + WDTHOLD;
P1DIR |= 0x41;

for(;;){
for (i = 0 ; i < 20000 ; i++){

if (i == 0)
P1OUT ^= 0x01;

if (i == 6000)
P1OUT ^= 0x40;

}
}

}

tabbing is helpful
for readability.
Many useful
editors will help
tabbing

braces

The compiler itself ignores whitespace – it's just for readability

executed even if
i != 0

if (i == 0){
a = 2;
b = 3;

}

vs vs

if (i == 0) if (i == 0) if (i == 0) a = 2;
a = 2; a = 2; b = 3;
b = 3; b = 3;

Never do this:
if (i == 0);
a = 2;

Programming in C
Operators:
 =, +, -, *, /
% - modulus
& - bitwise AND
| - bitwise OR
^ - bitwise XOR
~ - bitwise NOT
<< - bitshift left
>> - bitshift right

Comparison:
==, <, >, != if (i < 3), if (i != 3)

&& - logical AND if (i == 1 && j == 2)
|| - logical OR if (i == 1 || j == 2)
! logical NOT

Force a bit on:
a |= 2

Force a bit off:
a &= ~2

Flip a bit:
a ^= 2;

See Jean-Francois talk about these bitwise operators here:
 https://www.youtube.com/watch?v=kwcjclunlug

What about sin, cos, sqrt, etc?
These are not built in to the C language. However...

https://www.youtube.com/watch?v=kwcjclunlug

Programming in C

Libraries:
there are some “standard” libraries available that extend the
operations you can easily use.

eg:
the math library gives access to functions like:
sin(x), cos(x), tan(x), sqrt(x), ln(x), log(x) etc...

To use math functions, you need to:
#include <math.h> at the top of the file, and also put:
-lm on the compilation command line.

Other libraries provide routines for string manipulations and other
things...

These libraries tend to take up a substantial amount of flash and
consume (precious) ram. You should try to avoid these on the MSP430
if at all possible!

Programming in C

int multiply_together(int x, int y)
{

return x*y;
}

...

y = multiply_together(4,8);
...

You can define other functions that can
take arguments and return values.

The function definition either needs
to come in the file before you call it,
or you need to supply a function
prototype before you call it.

A prototype for this function would
simply be:
int multiply_together(int x, int y);

Data types:

char, unsigned char – 8 bit integer (-128 to 127 or 0 to 255)

short, unsigned short (usually 16 bit integer, size on msp430 ?)

int, unsigned int – usually an integer of the native word size: 16 bits
(-32768 to 32767 or 0 to 65536)

long, unsigned long – 32 bit integer
(~ -2x109 to ~2x109 or 0 to ~4x109)

long long, unsigned long long – 64 bit integer
(~ -9x1018 to ~ 9 x 1018 or 0 to ~2 x 1019)

float – floating point number (32 bits)
(floating point operations are very expensive on a processor
like the msp430 that lacks a dedicated fpu - avoid if possible).

Data Types:

In many compilers, can use types:
uint8_t/ int8_t (same as unsigned char/char)
uint16_t/int16_t (same as unsigned int/int on msp430)
uint32_t/int32_t (same as unsigned long/long on msp430)
uint64_t/int64_t

These are 'better' because you always know exactly how big they are.

To use these, add
#include <stdint.h>
at the top of the file.

● Indentation.
Please use proper indentation of your C code
to make it readable! Tabs of 3-4 spaces are generally best.

● There are tools that can help. Many text editors can help you
indent properly.

● For Mac: install “indent” using macports.

See http://www.cprogramming.com/tutorial/style.html

for more details than you care about, see: http://en.wikipedia.org/wiki/Indent_style

if (i == 0){
do thing 1;
do thing 2;
do thing 3;

}
else{

do other 1;
do other 2;
do other 3;

}

if (i == 0)
{do thing 1;
do thing 2;
do thing 3;}
else{do other 1;
do other 2;
do other 3;}

if (i == 0){do thing 1;
do thing 2;
do thing 3;
}
else{do other 1;
do other 2;
do other 3;
}

vs:

Mixing C and Assembly code:

in a C program you can:

asm(“assembler text”);

For gcc, see: https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

This can be useful for sections of code that need to be as fast as possible!

But must be done with care to make sure that you that you don't violate the compiler's
assumptions about registers used!

http://www.cprogramming.com/tutorial/style.html
http://en.wikipedia.org/wiki/Indent_style

Some Resources for C programming:

Operators

http://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B#Table

Operator Precedence:
http://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B#Operator_precedence

C Library reference guide:
http://www.acm.uiuc.edu/webmonkeys/book/c_guide/

Textbook: Introduction to Embedded Systems Using Microcontrollers and the MSP430
http://webcat2.library.ubc.ca/vwebv/holdingsInfo?bibId=7372090

Some MSP430 examples:
http://dbindner.freeshell.org/msp430/#_increasing_the_clock_speed

Using peripherals

#include "msp430.h"

void main(void)
{
 WDTCTL = WDTPW + WDTHOLD; // Stop WDT
 ADC10CTL0 = ADC10SHT_2 + ADC10ON; // ADC10ON
 ADC10CTL1 = INCH_1; // input A1
 ADC10AE0 |= 0x02; // PA.1 ADC option select
 P1DIR |= 0x01 ; // Set P1.0 to output direction

 for (;;)
 {
 ADC10CTL0 |= ENC + ADC10SC; // Sampling and conversion start
 while (ADC10CTL1 & ADC10BUSY); // ADC10BUSY?

 if (ADC10MEM < 0x2FF)
 P1OUT &= ~0x01; // Clear P1.0 LED off
 else
 P1OUT |= 0x01; // Set P1.0 LED on

 unsigned i;
 for (i = 0xFFFF; i > 0; i--); // Delay
 }
}

READING THE DATASHEET IS ESSENTIAL!
for this, Chapter 22 - ADC10

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

Using peripherals

#include "msp430.h"

void main(void)
{
 WDTCTL = WDTPW + WDTHOLD; // Stop WDT
 ADC10CTL0 = ADC10SHT_2 + ADC10ON; // ADC10ON
 ADC10CTL1 = INCH_1; // input A1
 ADC10AE0 |= 0x02; // PA.1 ADC option select
 P1DIR |= 0x01 ; // Set P1.0 to output direction

 for (;;)
 {
 ADC10CTL0 |= ENC + ADC10SC; // Sampling and conversion start
 while (ADC10CTL1 & ADC10BUSY); // ADC10BUSY?

 if (ADC10MEM < 0x2FF)
 P1OUT &= ~0x01; // Clear P1.0 LED off
 else
 P1OUT |= 0x01; // Set P1.0 LED on

 unsigned i;
 for (i = 0xFFFF; i > 0; i--); // Delay
 }
}

http://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B#Table
http://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B#Operator_precedence
http://www.acm.uiuc.edu/webmonkeys/book/c_guide/
http://webcat2.library.ubc.ca/vwebv/holdingsInfo?bibId=7372090
http://dbindner.freeshell.org/msp430/#_increasing_the_clock_speed

 ADC10CTL0 = ADC10SHT_2 + ADC10ON; // ADC10ON

 ADC10CTL0 = ADC10SHT_2 + ADC10ON; // ADC10ON

If the register descriptions don't
have enough information then:

1) Look back earlier in the ADC10
chapter for more description of
the operation.

2) Check the text book for an
alternative description.

3) Ask a classmate or one of us!

Using peripherals

#include "msp430.h"

void main(void)
{
 WDTCTL = WDTPW + WDTHOLD; // Stop WDT
 ADC10CTL0 = ADC10SHT_2 + ADC10ON; // ADC10ON
 ADC10CTL1 = INCH_1; // input A1
 ADC10AE0 |= 0x02; // PA.1 ADC option select
 P1DIR |= 0x01 ; // Set P1.0 to output direction

 for (;;)
 {
 ADC10CTL0 |= ENC + ADC10SC; // Sampling and conversion start
 while (ADC10CTL1 & ADC10BUSY); // ADC10BUSY?

 if (ADC10MEM < 0x2FF)
 P1OUT &= ~0x01; // Clear P1.0 LED off
 else
 P1OUT |= 0x01; // Set P1.0 LED on

 unsigned i;
 for (i = 0xFFFF; i > 0; i--); // Delay
 }
}

 ADC10CTL1 = INCH_1; // input A1

 ADC10CTL1 = INCH_1; // input A1

 ADC10AE0 |= 0x02; // PA.1 ADC option select

Using peripherals

#include "msp430.h"

void main(void)
{
 WDTCTL = WDTPW + WDTHOLD; // Stop WDT
 ADC10CTL0 = ADC10SHT_2 + ADC10ON; // ADC10ON
 ADC10CTL1 = INCH_1; // input A1
 ADC10AE0 |= 0x02; // PA.1 ADC option select
 P1DIR |= 0x01 ; // Set P1.0 to output direction

 for (;;)
 {
 ADC10CTL0 |= ENC + ADC10SC; // Sampling and conversion start
 while (ADC10CTL1 & ADC10BUSY); // ADC10BUSY?

 if (ADC10MEM < 0x2FF)
 P1OUT &= ~0x01; // Clear P1.0 LED off
 else
 P1OUT |= 0x01; // Set P1.0 LED on

 unsigned i;
 for (i = 0xFFFF; i > 0; i--); // Delay
 }
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

