Today's Plan:

Announcements

Review Activities 1&2

Programming in C

Using peripherals on the MSP430 (if time)

Activity 3

Announcements:

• Midterm coming on Feb 9. Will need to write simple programs in C and/or assembler for MSP430, you will need to extract information from data sheets (which I will provide), and will need to analyze/explain code samples. See examples on web site from previous years.

Announcements:

• Projects: should be starting to think about. You will need to provide a short written description (eg 1/2 page) of what you plan to assemble/build, and what parts you will require. Bring ideas to the lab next week! Submit 1/2 page in the lab Jan 30 – Feb 3.

• Project Scope: Your project **must** use the MSP430 as a central component. Your project should incorporate *at least one* non-trivial external hardware component (sensor, motor, display etc). Your project may (but is not required) to communicate with a host computer for display or user interaction.

• Parts: We have access to many electronic components, some mechano and many motors and sensors that you may borrow for your project. Who pays for parts that need to be acquired will depend on what the parts are, who gets to keep them, and their price.

- Write commands which will configure all pins of port 1 as inputs, and move the value from port 1 to register R7. Write the binary number which will be in the 16 bit register R7 after these operations assuming that the pins of port 1 were connected to 3V.
- Port P1 registers:
- P1REN ; Port P1 resistor enable
- P1SEL ; Port P1 selection
- P1DIR ; Port P1 direction
- P1OUT ; Port P1 output
- P1IN ; Port P1 input

• Write commands which will configure all pins of port 1 as inputs, and move the value from port 1 to register R7. Write the binary number which will be in the 16 bit register R7 after these operations assuming that the pins of port 1 were connected to 3V.

mov.b 0x00, &P1DIR mov.b &P1IN, R7 R7 = 0xXXFF

mov.b used so as to write to only P1DIR and not to P1DIR and whatever is next in memory (P1IFG).

mov.b used to copy only P1IN, and not also whatever is next in memory (P2OUT).

What are the values of R7 and the Z, N, and C bits after the following commands (assuming they were all 0 initially)

 $Z = 0 \quad N = 0 \quad C = 0 \quad R7 = 0$ mov.w #0xF0F0, R7 $Z = ? \quad N = ? \quad C = ? \quad R7 = ?$ add.w #0xF000, R7 $Z = ? \quad N = ? \quad C = ? \quad R7 = ?$ sub.w #0xE0F0, R7 $Z = ? \quad N = ? \quad C = ? \quad R7 = ?$

What are the values of R7 and the Z, N, and C bits after the following commands (assuming they were all 0 initially)

Z = 0 N = 0 C = 0 R7 = 0mov.w #0xF0F0, R7 Z=0 N = 0 C = 0 R7 = 0xF0F0 add.w #0xF000, R7 Z = ? N = ? C = ? R7 = ? sub.w #0xE0F0, R7 Z = ? N = ? C = ? R7 = ?

mov doesn't touch the status bits

What are the values of R7 and the Z, N, and C bits after the following commands (assuming they were all 0 initially)

 $Z = 0 \quad N = 0 \quad C = 0 \quad R7 = 0$ mov.w #0xF0F0, R7 $Z = 0 \quad N = 0 \quad C = 0 \quad R7 = 0xF0F0$ add.w #0xF000, R7 $Z = 0 \quad N = 1 \quad C = 1 \quad R7 = 0xE0F0$ sub.w #0xE0F0, R7 $Z = ?^{4} \quad N = ? \quad C = ? \quad R7 = ?$

0xE0F0 is negative (if interpreted as signed)

What are the values of R7 and the Z, N, and C bits after the following commands (assuming they were all 0 initially)

 $Z = 0 \quad N = 0 \quad C = 0 \quad R7 = 0$ mov.w #0xF0F0, R7 $Z = 0 \quad N = 0 \quad C = 0 \quad R7 = 0xF0F0$ add.w #0xF000, R7 $Z = 0 \quad N = 1 \quad C = 1 \quad R7 = 0xE0F0$ sub.w #0xE0F0, R7 $Z = 1 \quad N = 0 \quad C = 1 \quad R7 = 0x0000$

> The carry bit is set because of the way the subtraction is done. Subtraction is done by adding the inverse of the first operand, plus one. The carry bit is set if there is a carry from the addition.

```
#include <msp430.h>
```

 include header file, similar to .include in assembly.
 Defines symbols like P1OUT

```
volatile unsigned int i=0;
int main(void)
{
   WDTCTL = WDTPW + WDTHOLD;
   P1DIR |= 0x41;
   for(;;){
      for ( i = 0 ; i < 20000 ; i++ ){
         if (i == 0)
             P1OUT ^= 0x01;
         if ( i == 6000)
             P10UT ^= 0x40;
```

```
Programming in C
```

{

```
#include <msp430.h>
```

```
volatile unsigned int i=0;
```

Declare a global variable.

Global variables can be used anywhere in the program. The volatile keyword tells the compiler that the variable might change unexpectedly (eg in an interrupt) so it should store the variable in RAM, not just in a register.

```
WDTCTL = WDTPW + WDTHOLD;
P1DIR |= 0x41;
```

```
for(;;){
    for ( i = 0 ; i < 20000 ; i++ ){
        if ( i == 0 )
            P1OUT ^= 0x01;
        if ( i == 6000)
            P1OUT ^= 0x40;
        }
}</pre>
```

A variable declared within a set of braces can only be accessed within those braces.

```
#include <msp430.h>
```

```
volatile unsigned int i=0;
int main(void)
```

Every C program must have a routine called main. The compiler generates the code necessary for the address of the main routine to go into the reset vector. The (void) says that no parameters are passed to the function.

```
WDTCTL = WDTPW + WDTHOLD;
P1DIR |= 0x41;
```

```
for(;;){
    for ( i = 0 ; i < 20000 ; i++ ){
        if ( i == 0 )
            P1OUT ^= 0x01;
        if ( i == 6000)
            P1OUT ^= 0x40;
        }
}</pre>
```

```
These look like ordinary C assignments,
Programming in C
                                     but the symbol names are special
                                     values defined in the include file.
#include <msp430.h>
volatile unsigned int i=0;
int main(void)
{
   WDTCTL = WDTPW + WDTHOLD;
   P1DIR |= 0x41;
   for(;;){
       for ( i = 0 ; i < 20000 ; i++ ){
          if (i == 0)
              P1OUT ^= 0x01;
          if ( i == 6000)
              P10UT ^= 0x40;
```

```
#include <msp430.h>
```

```
volatile unsigned int i=0;
int main(void)
{
   WDTCTL = WDTPW + WDTHOLD;
   P1DIR |= 0x41;
                                            Turn on the bits to ensure that
                                            P1.6 and P1.0 are outputs.
   for(;;){
                                            |= is an operator. This statement
       for ( i = 0 ; i < 20000 ; i++ ){
                                            Is equivalent to:
           if (i == 0)
                                            P1DIR = P1DIR | 0x41;
                                            where | is the bitwise OR
               P10UT ^= 0x01;
                                            operation.
           if ( i == 6000)
               P10UT ^= 0x40;
```

```
#include <msp430.h>
volatile unsigned int i=0;
int main(void)
{
   WDTCTL = WDTPW + WDTHOLD;
   P1DIR |= 0x41;
                            for( initialization ; condition ; increment expression )
   for(;;){
      for (i = 0; i < 20000; i++)
          if (i == 0)
             P1OUT ^= 0x01;
          if ( i == 6000)
             P10UT ^= 0x40;
```

```
#include <msp430.h>
```

```
volatile unsigned int i=0;
int main(void)
{
   WDTCTL = WDTPW + WDTHOLD;
   P1DIR |= 0x41;
   for(;;){
       for (i = 0; i < 20000; i++)
           if ( i == 0 ) -
                                                Test if i is 0. Note that
                                                equality is tested with ==
               P1OUT ^= 0x01;
                                                A single = is an assignment.
           if ( i == 6000)
               P10UT ^= 0x40;
                                                if (i = 0) is "valid" code, but
                                                probably doesn't do what you
                                                want!
```

P1OUT ^= 0x01;

P10UT ^= 0x40;

if (i == 6000)

```
P1OUT = P1OUT \land 0x01;
```

```
#include <msp430.h>
volatile unsigned int i=0;
int main(void)
{
   WDTCTL = WDTPW + WDTHOLD;
   P1DIR |= 0x41;
   for(;;){
      for ( i = 0 ; i < 20000 ; i++ ){
                                                   note ; at ends of
          if (i == 0)
                                                   statements.
             P1OUT ^= 0x01;
          if ( i == 6000)
             P10UT ^= 0x40; -
```

```
#include <msp430.h>
volatile unsigned int i=0;
int main(void)
{
   WDTCTL = WDTPW + WDTHOLD;
   P1DIR |= 0x41;
   for(;;){
      for ( i = 0 ; i < 20000 ; i++ ){◄
                                                  but no ;'s here
          if ( i == 0 ) -
             P1OUT ^= 0x01;
          if ( i == 6000)
             P1OUT ^= 0x40;
```


VS

executed even if i != 0

if (i == 0) a = 2; b = 3;Never do this: if (i == 0) a = 2; b = 3;Never do this: if (i == 0); a = 2; b = 3;tabbing is helpful for readability. Many useful editors will help tabbing

The compiler itself ignores whitespace – it's just for readability

Programming in C Operators:

=, +, -, *, / % - modulus & - bitwise AND | - bitwise OR ^ - bitwise XOR ~ - bitwise NOT << - bitshift left >> - bitshift right Force a bit on: $a \models 2$

Force a bit off: a &= ~ 2

Flip a bit: $a ^= 2;$

See Jean-Francois talk about these bitwise operators here: https://www.youtube.com/watch?v=kwcjclunlug

Comparison: ==, <, >, !=

if (i < 3), if (i != 3)

&& - logical AND || - logical OR ! logical NOT

if (i == 1 && j == 2)
if (i == 1
$$|| j == 2$$
)

What about sin, cos, sqrt, etc? These **are not** built in to the C language. However...

Libraries:

there are some "standard" libraries available that extend the operations you can easily use.

eg: the math library gives access to functions like: sin(x), cos(x), tan(x), sqrt(x), ln(x), log(x) etc...

To use math functions, you need to: #include <math.h> at the top of the file, and also put: -lm on the compilation command line.

Other libraries provide routines for string manipulations and other things...

These libraries tend to take up a substantial amount of flash and consume (precious) ram. You should try to avoid these on the MSP430 if at all possible!

```
int multiply_together(int x, int y)
{
    return x*y;
}
```

You can define other functions that can take arguments and return values.

```
y = multiply_together(4,8);
```

• • •

The function definition either needs to come in the file before you call it, or you need to supply a *function prototype* before you call it.

A prototype for this function would simply be: int multiply_together(int x, int y); Data types:

char, unsigned char - 8 bit integer (-128 to 127 or 0 to 255)

short, unsigned short (usually 16 bit integer, size on msp430 ?)

int, unsigned int – usually an integer of the native word size: 16 bits (-32768 to 32767 or 0 to 65536)

long, unsigned long – 32 bit integer ($\sim -2x10^9$ to $\sim 2x10^9$ or 0 to $\sim 4x10^9$)

long long, unsigned long long – 64 bit integer (~ $-9x10^{18}$ to ~ 9×10^{18} or 0 to ~ 2×10^{19})

float – floating point number (32 bits) (floating point operations are very expensive on a processor like the msp430 that lacks a dedicated fpu - avoid if possible). Data Types:

In many compilers, can use types: uint8_t/ int8_t (same as unsigned char/char) uint16_t/int16_t (same as unsigned int/int on msp430) uint32_t/int32_t (same as unsigned long/long on msp430) uint64_t/int64_t

These are 'better' because you always know exactly how big they are.

To use these, add #include <stdint.h> at the top of the file. • Indentation.

Please use proper indentation of your C code to make it readable! Tabs of 3-4 spaces are generally best.

• There are tools that can help. Many text editors can help you indent properly.

• For Mac: install "indent" using macports.

See http://www.cprogramming.com/tutorial/style.html

for more details than you care about, see: http://en.wikipedia.org/wiki/Indent_style

```
if (i == 0) {
    do thing 1;
    do thing 2;
    do thing 3;
}
else{
    do other 1;
    do other 2;
    do other 3;
}
```

VS:

```
if (i == 0)
{do thing 1;
do thing 2;
do thing 3;}
else{do other 1;
do other 2;
do other 3;}
```

```
if (i == 0) {do thing 1;
do thing 2;
do thing 3;
}
else{do other 1;
do other 2;
do other 3;
}
```

Mixing C and Assembly code:

in a C program you can:

asm("assembler text");

For gcc, see: https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

This can be useful for sections of code that need to be as fast as possible!

But must be done with care to make sure that you that you don't violate the compiler's assumptions about registers used!

Some Resources for C programming:

Operators

http://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B#Table

Operator Precedence: http://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B#Operator_precedence

C Library reference guide: http://www.acm.uiuc.edu/webmonkeys/book/c_guide/

Textbook: Introduction to Embedded Systems Using Microcontrollers and the MSP430 http://webcat2.library.ubc.ca/vwebv/holdingsInfo?bibId=7372090

Some MSP430 examples: http://dbindner.freeshell.org/msp430/#_increasing_the_clock_speed

Using peripherals

```
#include "msp430.h"
void main(void)
  WDTCTL = WDTPW + WDTHOLD;
  ADC10CTL0 = ADC10SHT 2 + ADC10ON; // ADC10ON
  ADC10CTL1 = INCH 1;
  ADC10AE0 \mid = 0 \times 02;
  P1DIR \mid = 0 \times 01;
  for (;;)
    while (ADC10CTL1 & ADC10BUSY); // ADC10BUSY?
    if (ADC10MEM < 0x2FF)
      P10UT &= \sim 0 \times 01;
    else
      Plour \mid = 0 \times 01;
    unsigned i;
    for (i = 0 \times FFFF; i > 0; i--);
```

READING THE DATASHEET IS ESSENTIAL! for this, Chapter 22 - ADC10

```
// Stop WDT
// input A1
// PA.1 ADC option select
 // Set P1.0 to output direction
```

```
ADC10CTL0 |= ENC + ADC10SC; // Sampling and conversion start
```

```
// Clear P1.0 LED off
```

```
// Set P1.0 LED on
```

```
// Delay
```

Using peripherals

```
#include "msp430.h"
void main(void)
  WDTCTI = WDTPW + WDTHOLD.
                                           // Stop WDT
ADC10CTL0 = ADC10SHT 2 + ADC10ON;
                                           // ADC100N
  ADC10CTL1 = INCH 1;
                                           // input A1
  ADC10AE0 \mid = 0 \times 02;
                                           // PA.1 ADC option select
  P1DIR \mid = 0 \times 01;
                                           // Set P1.0 to output direction
  for (;;)
    ADC10CTL0 |= ENC + ADC10SC; // Sampling and conversion start
                                          // ADC10BUSY?
    while (ADC10CTL1 & ADC10BUSY);
    if (ADC10MEM < 0x2FF)
                                           // Clear P1.0 LED off
      P10UT &= \sim 0 \times 01;
    else
      Plour \mid = 0 \times 01;
                                           // Set P1.0 LED on
    unsigned i;
                                    // Delay
    for (i = 0 \times FFFF; i > 0; i--);
```

ADC10CTL0 = ADC10SHT 2 + ADC10ON; // ADC10ON

ADC10 Registers www.ti.com 22.3.1 ADC10CTL0, ADC10 Control Register 0 15 14 13 10 9 8 SREFX ADC10SHTx ADC10SR REFOUT REFBURST rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) w-(0) 7 6 5 2 3 1 0 MSC REF2 5V REFON ADC100N ADC10IE ADC10IFG ENC ADC10SC rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) Can be modified only when ENC = 0 Bits 15-13 Select reference. SREFx 000 $V_{B_{*}} = V_{CC}$ and $V_{B_{*}} = V_{SS}$ 001 V_{B+} = V_{BEF+} and V_B = V_{SS} 010 V_{R+} = V_{eREF+} and V_R = V_{SS}. Devices with V_{eREF+} only. V_{R+} = Buffered V_{ellEF+} and V_R = V_{SS}. Devices with V_{ellEF+} pin only. 011 100 V_{B4} = V_{CC} and V_B = V_{DEE} / V_{eDEE}. Devices with V_{eDEE} pin only. $V_{m_{h}} = V_{mer_{h}}$ and $V_{m} = V_{mer_{h}}/V_{mer_{h}}$. Devices with $V_{mer_{h}}$ pins only. 101 V_{R+} = V_{ePEF+} and V_R = V_{PEF} / V_{ePEF+}. Devices with V_{ePEF+} pins only 110 V_{B+} = Buttered V_{effEF+} and V_{eff} = V_{PEF} / V_{effEF}, Devices with V_{effEF+}, pins only. 111 ADC10SHTx Bits 12-11 ADC10 sample-and-hold time 00 4 × ADC10CLKs 01 8 × ADC10CLKs 10 16 × ADC10CLKs ADC10SR Bit 10 ADC10 sampling rate. This bit selects the reference buffer drive capability for the maximum sampling rate. Setting ADC10SR reduces the current consumption of the reference buffer. 0 Reference buffer supports up to ~200 ksps Reference buffer supports up to ~50 ksps 1 REFOUT Bit 9 Reference output Reference output off 0 Reference output on. Devices with Verer+ / Verer+ pin only. 1 REFBURST Bit 8 Reference burst. n Reference buffer on continuously Reference buffer on only during sample-and-conversion 1 MSC Bit 7 Multiple sample and conversion. Valid only for sequence or repeated modes. 0 The sampling requires a rising edge of the SHI signal to trigger each sample-and-conversion. The first rising edge of the SHI signal triggers the sampling timer, but further 1 sample-and-conversions are performed automatically as soon as the prior conversion is completed REF2 5V Bit 6 Reference-generator voltage. REFON must also be set. 1.5 V 0 ADC10 Registers 2.5 V REFON Reference generator on ADC10IFG Bit 2 Bit 5 0 Reference off 0 ADC10 ON Bit 4 ADC10 on 0 ADC10 off ADC10 on

rupt enable

Interrupt disabled

Interrupt enabled

0

1

ADC10IE

www.ti.com ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically reset when the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is set when a block of transfers is completed. No interrupt pending Interrupt pending ENC Bit 1

- ADC10 enabled Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set together with one instruction. ADC10SC is reset automatically.
- 0 No sample-and-conversion start
- 1 Start sample-and-conversion

ADC10 disabled

Enable conversion

0

Bit 0

ADC10SC

Start sample-and-conversion

www.ti.com

// ADC100N

Using peripherals

```
#include "msp430.h"
void main(void)
  WDTCTL = WDTPW + WDTHOLD;
                                           // Stop WDT
  ADC10CTL0 = ADC10SHT 2 + ADC10ON:
                                            // ADC100N
ADC10CTL1 = INCH 1;
                                            // input A1
  ADC10AE0 \mid = 0 \times 02;
                                           // PA.1 ADC option select
  P1DIR \mid = 0 \times 01;
                                            // Set P1.0 to output direction
  for (;;)
    ADC10CTL0 |= ENC + ADC10SC; // Sampling and conversion start
                                           // ADC10BUSY?
    while (ADC10CTL1 & ADC10BUSY);
    if (ADC10MEM < 0x2FF)
                                           // Clear P1.0 LED off
      P10UT &= \sim 0 \times 01;
    else
                                           // Set P1.0 LED on
      Plour \mid = 0 \times 01;
    unsigned i;
    for (i = 0 \times FFFF; i > 0; i--);
                                    // Delay
```

ADC10CTL1 = INCH_1;

// input Al

TEXAS INSTRUMENTS

1

2.3.2 ADC	C10CTL1,	ADC10 Contr	rol Register 1						
15	14	13	12	11	10	9	8		
		INCHx		s	HSx	ADC10DF	ISSH		
IW-(v)	pw-(0)	rw-(0)		rw-(0)	rw-(0)	rw-(0)	rw-(0)		
7	6	5	4	3	2	1	0		
	ADC10DI	/x	ADC10	SSELx	CON	ISEQx	ADC10BUSY		
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	r-0		
	Can be mod	lified only when EN	C = 0						
NCHx	Bits 15-12 Input channel select. These bits select the channel for a single-conversion or the highest channel for a								
		0000 A0	control of the second sec	- 760 Giainei		00. 000 001100 apr			
		0001 A1							
		0010 A2							
		0011 A3							
		0100 A4							
		0101 A5							
		0110 A6							
		0111 A7							
		1000 V _{ePEF+}							
		1001 V _{PEF} /V _{ePE}	р.						
		1010 Temperat	ure sensor						
		1011 (V _{cc} - V _{ss})/2						
		1100 (V _{cc} - V _{ss}) / 2, A12 on MSP43	0F22xx devices					
		1101 (V _{cc} - V _{ss}) / 2, A13 on MSP43	0F22xx devices					
		1110 (V _{cc} - V _{ss}) / 2, A14 on MSP43	0F22xx devices					
		1111 (V _{CC} - V _{SS}) / 2, A15 on MSP43	UF22XX devices					
		00 ADC1050	: hit						
		01 Timer A.0							
		10 Timer A.	OUT0 ⁽¹⁾						
		11 Timer A.(OUT2 (Timer A.OUT	1 on MSP430F2	0x0. MSP 430G2x	31, and MSP430G	2x30 devices)(1)		
DC10DF	Bit 9	ADC10 data forma	at		,	. ,	,		
		0 Straight b	inary						
		1 2s comple	ement						
SSH	Bit 8	Invert signal samp	le-and-hold						
		0 The samp	ole-input signal is not	inverted.					
		1 The sample-input signal is inverted.							
DC10 DIVx	Bits 7-5	ADC10 clock divid	ler						
		000 /1							
		001 /2							
		010 /3							
		011 /4							
		100 /5							
		101 /6							
		110 /7							
		111 /8							
DC10SSELx	Bits 4-3	ADC10 dock sour	ce select						
		00 ADC1009	50						
		DI ACLK							
		In MOLK							

(1) Timer triggers are from Timer0_Ax if more than one timer module exists on the device.

ADC10 Registers

SEQx	Bits 2-1	Conversion sequence mode select					
		00 Single-channel-single-conversion					
		01 Sequence-of-channels					
		10 Repeat-single-channel					
		11 Repeat-sequence-of-channels					
0 BUSY	Bit 0	ADC10 busy. This bit indicates an active sample or conversion operation					
		0 No operation is active.					
		 A sequence, sample, or conversion is active. 					

ADC10CTL1 = INCH 1;

TEXAS INSTRUMENTS

ADC10 Registers www.ti.com 22.3.2 ADC10CTL1, ADC10 Control Register 1 13 9 14 12 11 10 8 15 SHSx ADC10DF INCHx ISSH nu.(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) 6 5 7 4 3 2 1 0 ADC10DIV x ADC10SSELx CONSEQx ADC10BUSY rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) r-0 Can be modified only when ENC = 0 INCHX Bits 15-12 Input channel select. These bits select the channel for a single-conversion or the highest channel for a sequence of conversions. Only available ADC channels should be selected. See device specific datashee 0000 A0 0001 A1 0010 A2 A3 0011 A4 0100 0101 A5 A6 0110 0111 A7 1000 V_{ePEF+} 1001 V_{PEF}/V_{ePEF}. 1010 Temperature sensor 1011 (V_{cc} - V_{ss}) / 2 1100 (Vcc - Vss) / 2, A12 on MSP430F22xx devices 1101 (V_{cc} - V_{ss}) / 2, A13 on MSP430F22xx devices 1110 (V_{cc} - V_{ss}) / 2, A14 on MSP430F22xx devices 1111 (V_{cc} - V_{ss}) / 2, A15 on MSP430F22xx devices ADC10SC bit 00 01 Timer A.OUT1(1) 10 Timer A.OUT0⁽¹⁾ 11 Timer A.OUT2 (Timer A.OUT1 on MSP430F20x0, MSP430G2x31, and MSP430G2x30 devices)(1) ADC10 data format ADC10 DF Bit 9 0 Straight binary 2s complement 1 ISSH Bit 8 Invert signal sample-and-hold The sample-input signal is not inverted. 0 The sample-input signal is inverted. 1 ADC10 DIVx Bits 7-5 ADC10 clock divider 000 /1 001 /2 ADC10 010 /3 011 /4 CONSE 100 /5 101 /6 110 17 111 /8 ADC10SSELx Bits 4-3 ADC10 clock source select ADC10OSC 00 ADC10 01 ACLK 10 MCLK SMCLK 11

// input A1

DVCC

SLAS694F-FEBRUARY 2010-REVISED APRIL 2011

Table 2. Terminal Functions

TER		NO. 14 16 N. PW BSA					
NAME	14 N. PW			DESCRIPTIC			
P1.0/ TA0CLK/ ACLK/ A0	2	1	٧o	General-purpose digital I/O pin Timer0_A, clock signal TACLK input ACLK signal output ADC10 analog input A0 ⁽¹⁾			
P1.1/ TA0.0/ A1	3	2	I/O	General-purpose digital I/O pin Timer0_A, capture: CCI0A input, compare: Out0 ADC10 analog input A1 ⁽¹⁾	outp		
P1.2/ TA0.1/ A2	4	3	١/O	General-purpose digital I/O pin Timer0_A, capture: CCI1A input, compare: Out1 ADC10 analog input A2 ⁽¹⁾	outp		
P1.3/ ADC10CLK/ A3/ VREF-/VEREF	5	4	١/O	General-purpose digital I/O pin ADC10, conversion clock output ⁽¹⁾ ADC10 analog input A3 ⁽¹⁾ ADC10 negative reference voltage ⁽¹⁾			
P1.4/ SMCLK/ A4/ VREF+/VEREF- TCK	+/ 6	5	I/O	General-purpose digital I/O pin SMCLK signal output ADC10 analog input A4 ⁽¹⁾ ADC10 positive reference voltage ⁽¹⁾ JTAG test clock, input terminal for device progra	mmi		
P1.5/ TA0.0/ A5/ SCLK/ TMS	7	6	I/O	General-purpose digital I/O pin Timer0_A, compare: Out0 output ADC10 analog input A5 ⁽¹⁾ USI: clock input in I2C mode; clock input/output JTAG test mode select, input terminal for device	in SI		
P1.6/ TA0.1/ A6/ SDO/ SCL/ TDI/TCLK	8	7	I/O	General-purpose digital I/O pin Timer0_A, capture: CCI1A input, compare: Out1 ADC10 analog input A6 ⁽¹⁾ USI: Data output in SPI mode USI: I2C clock in I2C mode JTAG test data input or test clock input during pi	outp		
P1.7/ A7/ SDI/ SDA/ TDO/TDI ⁽²⁾	9	8	I/O	General-purpose digital I/O pin ADC10 analog input A7 ⁽¹⁾ USI: Data input in SPI mode USI: I2C data in I2C mode JTAG test data output terminal or test data input	duri		
Registers					_		
2x Bits 2-1	Convers	ion sequ	ence mo	de select			
	00	Single-cl	hannel-si	ngle-conversion			
	10	Sequence Repeat-se	e-or-chai	annel			
	11	Repeat-	equence	-of-channels			
USY Bit 0	ADC10	ADC10 busy. This bit indicates an active sample or conversion operation mi					
	0	No opera	ation is a	ctive.	evi		
	1	A seque	nce, sam	ple, or conversion is active.	inc		

14 10 14 NA Oround advert

(1) Timer triggers are from Timer0_Ax if more than one timer module exists on the device.

// PA.1 ADC option select

22.3.3 ADC10AE0, Analog (Input) Enable Control Register 0

7	6	5	4	3	2	1	0		
ADC10AE0x									
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)		
ADC10 AE0x	Bits 7-0	ADC10 analog enable. These bits enable the corresponding pin for analog input. BIT0 corresponds to A0, BIT1 corresponds to A1, etc. The analog enable bit of not implemented channels should not be programm to 1. 0 Analog input disabled 1 Analog input enabled							

Using peripherals

```
#include "msp430.h"
void main(void)
  WDTCTL = WDTPW + WDTHOLD;
                                            // Stop WDT
  ADC10CTL0 = ADC10SHT 2 + ADC10ON; // ADC10ON
  ADC10CTL1 = INCH 1;
                                            // input A1
  ADC10AE0 \mid = 0 \times 02;
                                            // PA.1 ADC option select
  P1DIR \mid = 0 \times 01;
                                            // Set P1.0 to output direction
  for (;;)
    ADC10CTL0 \mid = ENC + ADC10SC;
                                            // Sampling and conversion start
                                            // ADC10BUSY?
    while (ADC10CTL1 & ADC10BUSY);
   if (ADC10MEM < 0x2FF)
      Plour \&= ~0 \times 01;
                                            // Clear P1.0 LED off
    else
      Plour \mid = 0 \times 01;
                                            // Set P1.0 LED on
    unsigned i;
    for (i = 0 \times FFFF; i > 0; i--);
                                     // Delay
```