

Today's plan:

● Announcements
● General Strategy
● Microcontroller programming concepts/last bits of

assembly
● Activity 2

● Intro to programming in C – time permitting

Announcements:

 Lab 1&2 Marking scheme:

Successful completion of
required lab activities.

2

Completeness and quality of
procedure/circuits/code etc.
used to perform the activities

10

General Report Structure:
objectives defined, clear
enough statements of what is
being done and why, what the
results were. General
understandability

2

Above and beyond. Evidence
of exploration above and
beyond the specific tasks
requested in the manual.

1

The remaining labs will have similar schemes. Labs 1&2 will be weighted less heavily than the
others.

Turn in Lab notes and annotated programs on Connect before
Start of Lab 3.

General Strategy

Documentation: read the manual!
 - not always so easy. Which manual?

There are two major documents relevant for the microcontroller:
 - Family reference guide (slau144) [eg cpu instructions]
 - chip data sheet (slas735) [eg what pin can do what]

Table of contents
Keyword searching

Also:
- Course lab manual – general instruction, what tasks are required
- OS specific set-up/user guide – how to set up computers, what
command to type to compile/assemble programs and load on to
Launchpad board.

Stack and Stack Pointer
• A part of the RAM usually starting at the top

(highest address 0x400) of the available RAM used
to store values which we will use later (PUSH,
PUSH.b and POP, POP.b commands) or for storing
values of registers during subroutines and interrupts.

• The size of the RAM limits the number of nested
subroutines and interrupts – we can not allow the area
where we keep the variables to overlap with the stack.
This is a common cause of “crashing” the
computer or microprocessor.

• Stack pointer (SP register) indicates the lowest
occupied position in the stack

#include "msp430g2553.inc"
org 0xf800
RESET:

mov.w #0x0400, sp
mov.w #WDTPW|WDTHOLD,&WDTCTL
mov.b #11110111b, &P1DIR
mov.b #01000001b, &P1OUT
mov.b #00001000b, &P1IE
mov.w #0x0041, R7
mov.b R7, &P1OUT
EINT
bis.w #CPUOFF,SR

PUSH:
xor.w #0000000001000001b, R7
mov.b R7,&P1OUT
bic.b #00001000b, &P1IFG
reti

org 0xffe4
dw PUSH
org 0xfffe
dw RESET

Interrupts

• Are triggered by an external event (eg an
input going low, a timer overflowing, number
of counts exceeding some preset value etc.)

• PC and SR are saved on the stack so that
regular flow can resume when the interrupt
finishes.

Program Flow

#include "msp430g2x31.inc"
CPUOFF equ 0x0010
org 0xf800
RESET:

mov.w #0x280, sp
mov.w #WDTPW|WDTHOLD,&WDTCTL
mov.b #11110111b, &P1DIR
mov.b #01000001b, &P1OUT
mov.b #00001000b, &P1IE
mov.w #0x0041, R7
mov.b R7, &P1OUT
EINT
bis.w #CPUOFF,SR

PUSH:
xor.w #0000000001000001b, R7
mov.b R7,&P1OUT
bic.b #00001000b, &P1IFG
reti

org 0xffe4
dw PUSH
org 0xfffe
dw RESET

Interrupts

• When interrupt occurs the current microprocessor’s
activity stops and the interrupt service routine (ISR) is
started

• The address of the ISR has to be stored in the specific
location in the memory. This address is called an
interrupt vector. They are located in the flash
memory area 0xFFE0 to 0xFFFF. The addresses of
the interrupt vectors are listed in the msp430g2553
manual.

Program Flow

#include "msp430g2x31.inc"
CPUOFF equ 0x0010
org 0xf800
RESET:

mov.w #0x280, sp
mov.w #WDTPW|WDTHOLD,&WDTCTL
mov.b #11110111b, &P1DIR
mov.b #01000001b, &P1OUT
mov.b #00001000b, &P1IE
mov.w #0x0041, R7
mov.b R7, &P1OUT
EINT
bis.w #CPUOFF,SR

PUSH:
xor.w #0000000001000001b, R7
mov.b R7,&P1OUT
bic.b #00001000b, &P1IFG
reti

org 0xffe4
dw PUSH
org 0xfffe
dw RESET

Interrupts

• The event setting an interrupt is in fact setting a bit in a specific
register. This bit is called an interrupt flag. For example a
PORT1.3 interrupt, sets bit 3 in the P1IFG register at the
address 0x026. The ISR must clear this flag!

• Each interrupt service routine has to end with RETI
command.

Interrupts
• When the interrupt occurs:

- status register and program counter are pushed onto the stack.
- the program counter is loaded from the interrupt vector
- the ISR (pointed to by the interrupt vector) executes
- the ISR must clear the interrupt flag [some clear themselves]
- reti pops the status register and program counter off the stack
 so the program can continue

Save/restore registers? In assembly you need to worry about
this yourself. In a C program, this is handled for you.

#include "msp430g2553.inc"
org 0xf800
RESET:

mov.w #0x400, sp
mov.w #WDTPW|WDTHOLD,&WDTCTL
mov.b #11110111b, &P1DIR
mov.b #01000001b, &P1OUT
mov.b #00001000b, &P1IE
mov.w #0x0041, R7
mov.b R7, &P1OUT
EINT
bis.w #CPUOFF,SR

PUSH:
xor.w #0000000001000001b, R7
mov.b R7,&P1OUT
bic.b #00001000b, &P1IFG
reti

org 0xffe4
dw PUSH
org 0xfffe
dw RESET

Global enable interrupts
(DINT will disable)

Enable pin P1.3 to produce
interrupts

Why program in Assembly?

Full control of every detail of program flow and
memory organization

Speed!

Smallest, most compact programs

Why program in Assembly?

Full control of every detail of program flow and
memory organization

Speed!

Smallest, most compact programs

Why not?

Need to take care of every detail

Hard to debug

Tedious

Instruction set is CPU specific

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

