
UK Astronomy Technology Centre David Atkinson
Royal Observatory Edinburgh 05/10/05
SCUBA-2 Project SC2/ELE/S565/01
 Version 0.1

pci_card.doc Page 1 of 6

SCUBA-2 PCI Card DSP Code Overview

1. Summary
This document describes the operation of the PCI card utilised to interface the SCUBA2 Multi-Channel
Electronics (MCE) with the linux data acquisition PC. The PCI card has a 250MHz fibre optic chipset
to communicate with the MCE, and it communicates with the host PC over the 33MHz (32 bit) PCI
bus. This PCI card is 3rd party hardware purchased from “Astronomical Research Cameras” (ARC),
SDSU. The heart of the PCI card is a Motorola DSP56301 processor, whose program is bootstrapped
from an EEPROM during power up. The program has been heavily modified (from that provided by
the manufacturer) to suit our requirements and interface with our PCI card driver. The SCUBA2
implementation of the PCI card is an evolution of the system designed for ULTRACAM (and utilised
by WFCAM).

2. References
[1] “250hzPCI_schematic.pdf”, Bob Leech, ARC, SDSU

[2] “250hzPCI_layout.pdf”, Bob Leech, ARC, SDSU

[3] “250hzPCI_U19 pld.pdf”, Bob Leech, ARC, SDSU

[4] “SCUBA2 data acquisition software overview – part two protocols-V3.0”, SC2/SOF/S200/014, X.
Gao, UK ATC

[5] “DSP56301 user’s manual”, DSP56301UM/AD, Revision 3, March 2001, section 6.2, Motorola
Inc.

[6] “PCI_SCUBA_header.asm”, David Atkinson, ATC

[7] “PCI_SCUBA_initialisation.asm” David Atkinson, ATC

[8] “PCI_SCUBA_main.asm”, David Atkinson, ATC

3. Introduction
Communication with the MCE is achieved using a duplex 250MHz fibre link. All communications to
and from the MCE are 32-bit with a little-endian byte order. However, it should be noted that the PCI
card’s DSP is a big-endian machine and 24-bit. Consequently, some on-chip byte manipulation is
required when communicating to and from the MCE. It is the PCI card’s responsibility to ensure all
data sent down the fibre is in the correct little-endian byte order, and furthermore that valid data
packets received on the fibre end up in host memory in correct little-endian byte order.

Data incoming over the fibre link are written to a FIFO for retrieval and examination by the on-board
DSP (actually two 8-bit FIFOs which appear as one 16-bit fifo to the DSP). Communication with the
host PC is via the PCI bus interface. The card can act as either a PCI bus master or slave, and a set of
registers are provided to mediate interaction over the bus [5]. Whilst the host (PC) does have access to
a subset of these registers for communication with the DSP, it does not have access to the on-board
memory in which image data, for instance, will be temporarily stored by the PCI card. These data must
therefore be transferred by the PCI card, acting as a bus master, into memory on the PC for use by the
host software.

pci_card.doc 2 of 6

4. PCI Command Set (interrupt driven actions)
The PCI driver software employs the host-accessible register HCVR (Host Command Vector Register),
to interrupt the DSP when it requires some operation to be performed. This mechanism is used to issue
“PCI commands” and can be considered to be like a function call, where the arguments are passed
through the register HTXR-DRXR (Host Transmit Data Register – DSP Receive Data Register).

The PCI card command set can be broken into two sub-categories. Firstly, there are the six commands
which can be issued directly from ‘user space’, and secondly there are two commands embedded
within the PCI card driver software to instruct the PCI card how to handle packets for and from the
MCE.

4.1 User Space Commands
• Read_memory (‘RDM’ command)– this command is executed to instruct the PCI card to return a
single value from DSP memory. The DSP has three types of memory: P memory (where the
executable programme is stored); X memory (where parameters are stored); and Y memory (where
data from the MCE is temporarily stored before being written to host memory).

• Write_memory (‘WDM’ command)– this command is executed to instruct the PCI card to write a
value to its on board memory. Typically, X memory would only ever be written to (to manipulate
programme parameters), however applications can be downloaded to P memory.

• Reset_pci (‘RST’ command) – this command forces a software reset on the PCI card.

• Reset_controller (‘RCO’ command) – this command instructs the PCI card to send a ‘special
character’ byte down the fibre to the MCE. On receipt of this ‘special character’ the MCE will reset its
firmware.

• Start_Application (‘GOA’ command) – this command instructs the PCI card to start an
application residing in the DSPs ‘application space’. Applications are downloaded to the PCI card as
and when they are needed to enable temporary specialised behaviour. Such applications are useful
during the development stage and for diagnostics.

• STOP_Application (‘STP’ command) – this command instructs the PCI card to stop any
application currently running in application space. This will result in the PCI card reverting to normal
operation.

4.2 Driver Commands
These two commands are used by the driver when instructing the PCI card about communications with
the MCE.

• send_packet_to_controller (‘CON’ command)– this command informs the PCI card that there is
a packet to be forwarded to the outgoing fibre link. The said packet is retrieved from host memory
(PCI card acting as bus master), then sent down the fibre to the MCE. For the SCUBA2 project the
PCI card must ensure that “IDLE” characters exist in between each word of a command sent to the
MCE. “IDLE” characters are inserted automatically by the (HotLINK) fibre chipset whenever data is
not being transmitted. Consequently, the PCI card needs to ensure that there is at least a fibre
transmitter clock cycle (40ns) between the transmission of adjacent words. This is required because
the MCE uses the “IDLE” characters for word synchronisation.

• send_packet_to_host (‘HST’ command) – this command instructs the PCI card to write an MCE
packet to host memory. The ‘HST’ command is only ever issued after the PCI card has notified the
host that a valid packet has arrived on the fibre.

Flow diagrams for the Interrupt Service Routines (ISR) of these two special commands are provided in
Appendix A1 and A2 respectively.

pci_card.doc 3 of 6

4.3 Command Arguments

The PCI command arguments, which are passed through the register HTXR-DRXR, are summarised in
Table 4.1.

Command Name Arguments Passed through HTXR-DRXR (24-bit)
Write_memory ‘WRM’ Memory Type Address Value
Read_memory ‘RDM’ Memory Type Adress Dummy

Start_application ‘GOA’ I.D. Dummy Dummy
Stop_application ‘STP’ Dummy Dummy Dummy

Reset_pci ‘RST’ Dummy Dummy Dummy
Reset_mce ‘RCO’ Dummy Dummy Dummy

Send_packet_to_controller ‘CON’ Buffer Addr Hi Buffer Addr Lo Go Flag
Send_packet_to_host ‘HST’ Buffer Addr Hi Buffer Addr Lo Dummy

Table 4.1: PCI Commands

4.4 PCI Command Replies – ‘Reply Messages’

A reply message must be generated for every command. The message contains four 24-bit words and
its structure is revealed in Table 4.2. The reply message is communicated to the host by passing the
four words to 24-bit register DTXS (DSP Slave Transmit Data Register), then interrupting the host
over the PCI bus (INTA). The host can access the reply message through register HRXS (Host Slave
Receive Data Register) [5] .

word 1 (24-bit) word 2 (24-bit) word 3 (24-bit) word 4 (24-bit)

Reply Word

‘REP’

Command Echo

i.e. ‘RDM’

Reply status

‘ACK’ or ‘ERR’
Data Word or Error

Code

Table 4.2: PCI Command reply message

4.5 PCI Command Summary

• All PCI commands are interrupt driven, and consequently each command has an associated
interrupt service routine (ISR).

• Commands are instigated by the host writing to vector register HCVR.

• Command arguments (of which there are four) are passed for through register HTXR-DRXR

• Replies to commands (reply messages) are passed to the host through register DTXS-HRXS,
signalled with the PCI bus interrupt available to the PCI card (INTA).

The next section goes on to describe the functionality of the main body of the DSP code, that is the
code running while it is not servicing interrupt driven commands.

pci_card.doc 4 of 6

5. Main Body of PCI Code: MCE Packet Handling
The main body of the DSP code services the incoming fibre link, notifies the host when a packet has
arrived, and once instructed (via the ‘HST’ command) writes the packet to host memory. A flow
diagram for the main body of the code is provided in Appendix A3. It should be noted that during
initialisation the DSP sets a bit called PACKET_CHOKE in a STATUS word. While this bit is set the
DSP will discard any data arriving on the fibre. The PACKET_CHOKE bit is cleared when the first
packet is sent to the MCE. That is the incoming fibre channel is ‘opened’ once communications with
the MCE are instigated by the host (via the “CON” command).

Data arriving up the fibre is written to one of two 1024 deep 8-bit FIFOs, U14 and U18[1]. The DSP
sees these as one 1024 deep 16-bit FIFO with a not_empty and half_full flag which it can pole.

All communication from the MCE must conform to the SCUBA 2 protocol [4]. All packets from the
MCE consist of a packet header, a packet body, and a checksum. The packet header format is revealed
in Table 5.1. As shown it begins with two preamble words. Any data arriving up the fibre without the
correct preamble sequence is discarded. There are two types of permitted packets, namely reply
packets and image data packets. The packet type is defined in word 3 of the header. An invalid packet
type will result in the entire packet being discarded, that is the host is not notified of the packet and the
DSP continually clears the receive FIFO until it finds the next valid preamble sequence. The 4th and
final word of the packet header indicates the size of the packet (in 32-bit words).

word 1 (32-bit) word 2 (32-bit) word 3 (32-bit) word 4 (32-bit)

Preamble 1
(0xA5A5A5A5)

Preamble 2
(0x5A5A5A5A)

 Packet Type
(reply or image data)

Packet Size
(no. of 32-bit words)

Table 5.1: MCE Packet Header

Once a correct preamble sequence followed by a valid packet type has arrived on the fibre, the packet
size (header word 4) is read from the FIFO and temporarily stored in DSP X memory (as two 16-bit
words). A notify message is then constructed to inform the host that there is a packet arriving from the
MCE to be written to host memory. The structure of the notify message is shown in Table 5.2. This
four word message is written to the 24-bit register DTXS. The host is then interrupted over the PCI
bus (INTA) to inform it that there is a message to read (accessed through HRXS on the host side).
Note that the notify message is communicated to the host in the same fashion as the PCI command
reply message.

word 1 (24-bit) word 2 (24-bit) word 3 (24-bit) word 4 (24-bit)

Notify Word
‘NFY’

Packet Type
(reply or data)

Packet Size
(high 16-bits)

Packet Size
(low 16-bits)

Table 5.2: Packet Notify Message

Once the notify message has been sent to the host, the DSP waits to be instructed how to proceed.
Typically the host will then issue a send_packet_to_host (“HST”) command, which instructs the DSP
that it can write the packet to host memory, and provides it with an address. Alternatively, the host
can issue a fatal error fast interrupt, which informs the DSP that it should abort the packet and re-
initialise. The fatal error fast interrupt is described in more detail in Section 6.

Once the PCI card has been instructed to write the packet to host memory (via “HST” command), it
begins to read the packet from the receive FIFO and write the packet to host memory as bus master.
During this process the packet is split into a number of manageable blocks, each being read from the
FIFO and written to host memory one-by-one. Two block sizes are adopted: 256-words blocks, and
16-word blocks. Any left over single words are processed separately.

pci_card.doc 5 of 6

As way of an example, consider a packet of size 1355 words. Such a packet would be processed as 5 x
256-word blocks, 4 x 16-word blocks, and 11 left over words.

Firstly, the 5 x 256-word blocks would be processed. One-by-one each block would be read from the
FIFO and temporarily stored in PCI memory (Y:0 Y:511: each 32-bit word uses two locations), then
DMAed to host memory as four PCI bursts (64 words per burst).

Secondly, the 4 x 16-word blocks would be processed. One-by-one each block would be read from the
FIFO and temporarily stored in PCI memory (Y:0 Y:31: each 32-bit word uses two locations), then
DMAed to host memory as one PCI burst (16 words per burst).

Finally the 11 left over words would be read from the FIFO and temporarily stored in PCI memory
(Y:0 Y:21: each 32-bit word uses two locations) , then written one-by-one over the bus to host
memory.

Once the entire packet has been written to the host memory, the PCI card replies to the HST command
(the only command whose reply isn’t in its ISR) and goes back to checking the fibre for the next
incoming packet.

6. Fast Interrupts
As discussed in Section 2.2, the HCVR provides a mechanism for the host processor to interrupt the
DSP core to execute a vectored interrupt. Typically this mechanism is utilised to execute PCI
command ISRs. However, it is also used to execute fast interrupts. Here the DSP core is interrupted
and the core temporarily jumps to execute one line of code written in a special vectored location. The
SCUBA2 bootcode employs three such fast interrupts. The first two are utilised for message
handshaking, and the third allows the host to communicate a fatal error to the DSP.

6.1 Message Handshaking
There are two types of ‘Message’ that the DSP can send to the host: reply message (a reply to a PCI
command) and notify message (to inform the host that a packet has arrived from the MCE). As
discussed in previous sections both of these messages comprise four 24-bit words, and are
communicated to the host by passing them to register DTXS, then interrupting the host over the PCI
bus (INTA). The DSP asserts this bus interrupt by setting a bit in the DSP Control Register (DCTR)
[5]. This bit stays high until the host issues a fast interrupt to force the DSP to clear it. Typically the
host will do this as soon as it detects the bus interrupt. Thereafter, once the host has finished
processing the message it issues a second fast interrupt, which clears a flag (INTA_FLAG) in the
STATUS word in DSP memory. Clearing this flag informs the DSP that the host has finished
processing the current message and is ready to receiver any subsequent messages.

Messages are communicated to the host using the “PCI_MESSAGE_TO_HOST” routine. A flow
diagram for this routine is provided in Appendix A4.

6.2 Fatal Errors
The third and final fast interrupt employed by this system is utilised to inform the DSP that there has
been a serious error and that it should stop what it is doing and re-initialise. The fatal error fast
interrupt sets a flag (FATAL_ERROR) in the STATUS word in DSP memory. The DSP checks this
flag at various stages of the main packet handling code (see flow diagram in Appendix A3), and if it
finds it set jumps to the initialisation code to force a software reset. Specifically there are three stages
where the fatal error flag is poled:

1. Immediately after the DSP has communicated a notify message to the host. Here
the DSP checks that either an ‘HST’ command has been received – indicating that
the packet should be written to host memory, or that the fatal error bit has been set,
indicating that the current MCE packet should be aborted and the DSP should re-
initialise.

pci_card.doc 6 of 6

2. While waiting for data to arrive on the fibre that is part of a current packet being
written to host memory. Once the ‘HST’ command has been issued the DSP has a
finite period of time to write the packet to host memory and reply to the command
(via reply message). If this does not happen in time host software forces the fatal
error fast interrupt. This is known as an HST Timeout. Typically, this would
occur if a partial frame was sent by the MCE, and the DSP was waiting on data to
arrive on the fibre.

3. While idling, i.e. servicing the fibre waiting for a packet to arrive.

7. Closing Remarks
The PCI card has two main functions. Firstly, to respond and reply to any commands issued by the
host PC, and secondly to service the incoming fibre link and notify the host when a valid packet has
arrived from the MCE. It replies to commands and notifies the host of packets using the same
mechanism - by writing a four word message to the DSP slave transmitter register (DTXS) and
interrupting the host over the PCI bus (INTA).

After notifying the host that there is a valid packet from the MCE, the host will instruct the PCI card
how to proceed. Typically, the host will issue an “HST” command to instruct the DSP to write the
packet to a given address. The DSP then splits the packet into manageable blocks and transfers it over
the PCI bus directly into host memory as bus master.

CON ISR

SAVE WORKING REGISTERS

SEND_PACKET_TO_CONTROLLER
Interrupt Service Routine

READ COMMAND FROM REGISTER DRXR
(Saved in PCI card’s X memory)

COMMAND STRUCTURE

WORD 1: ‘CON’
WORD 2: HOST ADDRESS (most significant 16-bits)
WORD 3: HOST ADDRESS (least significant 16-bits)
WORD 4: GO Flag (word 4 = 1 when command for MCE is
a ‘GO’ command. Otherwise word 4 = 0)

WORD 1 =
‘CON’RESTORE WORKING REGISTERS NO

REPLY TO HST COMMAND WITH ERROR
(CNE error - Command Name Error)

RTI

YES

CONCATENATE COMMAND WORDS 2 AND 3 TO GET 32 BIT ADDRESS.
(store in accumulator B)

The is actually a PCI bus address.
It is used when reading MCE command from host memory
as PCI bus master.

RESTORE WORKING REGISTERS

RTI

WORD 4 = 0?

READ A 32-BIT WORD FROM
HOST MEMORY

SEND WORD DOWN FIBRE TO MCE

READ
AND SENT 64

WORDS?

4 bytes of word sent little
endian.

Word read through DRXR
register. Bus address
incremented by 4

CLEAR ‘#PACKET_CHOKE’ BIT IN STATUS

REPLY TO ‘CON’ COMMAND

Interrupt host (INTA) and pass
reply through DTXS register

YES

NO

YES (not a GO command for MCE)

RUNNING
A PCI CARD

APPLICATION?

SET ‘#INTERNAL_GO’
BIT IN STATUS

Flag to tell application space
to generate a frame of
dummy data. (Used by PCI
card diagnostic application)

NO (GO command for MCE)

NOYES SET BIT ‘#DATA_DLY’
IN STATUS

Allows small delay to be
added before host notified of
first data packet in sequence

READ COMMAND FROM HOST
MEMORY AND DISCARD

Interrupt host (INTA) and pass
reply through DTXS register

Appendix A1: Flow Diagram for Send_Packet_to_Controller (CON) Command

‘opens’ incomming fibre
channel. When
PACKET_CHOKE bit set the
DSP throws away any data
arriving on fibre. This bit is
only ever set in the
initialisation code. So first
CON command after
initialisation ‘open’ the fibre
channel.

HST ISR

SAVE WORKING REGISTERS

SEND_PACKET_TO_HOST
Interrupt Service Routine

READ COMMAND FROM REGISTER DRXR
(Saved in PCI card’s X memory)

COMMAND STRUCTURE

WORD 1: ‘HST’
WORD 2: HOST ADDRESS (most significant 16-bits)
WORD 3: HOST ADDRESS (least significant 16-bits)
WORD 4: N/A

WORD 1 =
‘HST’

RESTORE WORKING REGISTERS

NO

REPLY TO HST COMMAND
WITH ERROR MESSAGE

(CNE error - Command Name Error)

RTI

YES

CONCATENATE COMMAND WORDS 2 AND 3 TO GET 32 BIT ADDRESS.
(store in accumulator B)

The is actually a PCI bus address.
It is used when writing the packet to host memory
as PCI bus master.

SET ‘#SEND_TO_HOST’ BIT IN STATUS

This informs the main body
of code that the host has
provided an address to write
the current packet to.

RESTORE WORKING REGISTERS
(except accumulator B)

RTI Note that the reply to the ‘HST’ happens after
the packet has been written to host memory.

Interrupt host (INTA) and pass
reply through DTXS register

Appendix A2: Flow Diagram for Send_Packet_to_Host (HST) Command

PACKET_IN

INITIALISE STATUS BITS AND LOCAL
MEMORY ADDRESS POINTERS

FATAL ERROR
FROM HOST?

PCI
APPLICATION

LOADED?

ANYTHING
IN FIBRE RECEIVE FIFO

(16 BIT)?

RUN
INITIALISATION

CODE

RUN
APPLICATION

NO

YES

PACKET
CHOKE ON?

YES

READ WORD (16bit) FROM FIFO
and SAVE (X:HEAD_W1_0)

IS WORD =
PREAMBLE 1_0

(0xa5a5)?

SAVE WORD (X:PRE_CORRUPT)
and set #PREMABLE_ERROR bit in STATUS

NO

ANYTHING
IN FIBRE RECEIVE FIFO

(16 BIT)?

READ WORD (16bit) FROM FIFO
and SAVE (X:HEAD_W1_1)

IS WORD =
PREAMBLE 1_1

(0xa5a5)?

YES

YES

NO

NO

ANYTHING
IN FIBRE RECEIVE FIFO

(16 BIT)?

READ WORD (16bit) FROM FIFO
and SAVE (X:HEAD_W2_0)

IS WORD =
PREAMBLE 2_0

(0x5a5a)?

YES

YES

NO
NO

ANYTHING
IN FIBRE RECEIVE FIFO

(16 BIT)?

READ WORD (16bit) FROM FIFO
and SAVE (X:HEAD_W2_1)

IS WORD =
PREAMBLE 2_1

(0x5a5a)?

YES

YES

NO
NO

NO

ANYTHING
IN FIBRE RECEIVE FIFO

(16 BIT)?

READ WORD (16bit) FROM FIFO
and SAVE (X:HEAD_W3_0)

YES

YES

NO

ANYTHING
IN FIBRE RECEIVE FIFO

(16 BIT)?

READ WORD (16bit) FROM FIFO
and SAVE X:HEAD_W3_1

YES

ANYTHING
IN FIBRE RECEIVE FIFO

(16 BIT)?

READ WORD (16bit) FROM FIFO
and SAVE X:HEAD_W4_0

ANYTHING
IN FIBRE RECEIVE FIFO

(16 BIT)?

READ WORD (16bit) FROM FIFO
and SAVE X:HEAD_W4_1

YES

YES

IS IT AN MCE
REPLY PACKET?

IS IT AN MCE
DATA PACKET?

NO

MCE_PACKET
NOINCREMENT FRAME

COUNTER

YES

YES

NO

NO

NO

Appendix A3: Flow Diagram for Main Body of DSP Code

YES

YES

NO

NO

MCE_PACKET

INITIALISE HOST NOTIFY

CALCULATE THE NUMBER OF DMA TRANSFERS REQUIRED TO WRITE PACKET TO HOST MEMORY.

(Number of 256-word blocks, Number of 16-word blocks, and number of left over single words)

NOTIFY HOST PC THAT THERE IS A PACKET FROM THE MCE

(Notify message gets put in Register DTXS and HOST interrupted - INTA)

GOT ADDRESS FROM
 HOST PC TO WRITE PACKET TO?

(via HST command interrupt)

FATAL
ERROR FROM HOST?

(header corrupt)

NO

YES RUN
INITIALISATION CODE PACKET_IN

ANY
256-WORD BLOCKS

TO PROCESS?

DMA 256-WORD BLOCK FROM DSP’s Y
MEMORY TO HOST MEMORY

VIA REGISTER DTXM (i.e. as PCI bus master)

SET BIT #HST_NFYD IN STATUS TO
FLAG THAT HOST HAS BEEN NOTIFIED

NO

YES

YES

ANY
16-WORD BLOCKS TO

PROCESS?

NO

YES

ANY SINGLE
 WORDS LEFT OVER?

NO

NO

REPLY to HST
command

JMP PACKET_IN

READ 256-WORD BLOCK FROM
FIFO (as 512 x 16bit words)

AND STORE IN DSP’s Y
MEMORY (Y:0 Y:511)

NOFATAL
ERROR FROM HOST?

(HST Timeout)

ARE THERE 256
WORDS IN FIFO?
(half full flag set?)

YES

RUN
INITIALISATION CODE

YES

NO

DMA 16-WORD BLOCK FROM DSP’s Y
MEMORY TO HOST MEMORY

VIA REGISTER DTXM (i.e. as PCI bus master)

NO FATAL
ERROR FROM HOST?

(HST Timeout)

IS THERE
A WORD IN FIFO?

(not empty set?)

YES
YES

NO

READ WORD FROM FIFO AND
STORE IN DSP’s Y MEMORY

(Y:0)

ALL WORDS
OF 16-WORD BLOCK
READ FROM FIFO?

NO YES

YES

WRITE LEFT OVERS TO HOST MEMORY
VIA REGISTER DTXM (i.e. as PCI bus master)

NO FATAL
ERROR FROM HOST?

(HST Timeout)

IS THERE
A WORD IN FIFO?

(not empty set?)

YES YES

NO

READ WORD FROM FIFO AND
STORE IN DSP’s Y MEMORY

(Y:0)

ALL SINGLE
WORDS READ FROM

FIFO?

NO YES

RUN
INITIALISATION CODE

PCI_MESSAGE_TO_HOST

HOST
READY TO RECEIVE

MESSAGE?
 (‘INTA_FLAG’ clear in

STATUS word?)

Appendix A4: Flow Diagram for PCI_MESSAGE_TO_HOST routine

NO

YES

This bit will be set if the host is still
processing the last message. The host
uses a ‘fast interrupt’ to force the DSP to
clear the ‘INTA_FLAG’ (in STATUS) when
it is ready to receive the next message.

SET ‘INTA_FLAG’ IN THE STATUS WORD

Set the INTA_FLAG bit in STATUS for the
next message. The host will use a ‘fast
interrupt’ to clear this bit when it has
finished processing the current message.

IS
DTXS
FULL?

Is the the DSP SLAVE TRANSMIT DATA
REGISTER - DTXS full? This is a 24-bit x
6 word deep FIFO.

YES

NO

WRITE WORD 1 OF THE MESSAGE TO DTXS

IS
DTXS
FULL?

YES

NO

WRITE WORD 2 OF THE MESSAGE TO DTXS

IS
DTXS
FULL?

YES

NO

WRITE WORD 3 OF THE MESSAGE TO DTXS

IS
DTXS
FULL?

YES

NO

WRITE WORD 4 OF THE MESSAGE TO DTXS

ASSERT PCI BUS INTERRUPT

(This Informs the host that there is a message in
register DTXS-HRXS for it to process)

RTS
(return from Subroutine)

The interrupt is asserted by setting a bit in the DSP Control Register (DCTR).
On its receipt the host instructs the DSP to clear this bit via a ‘fast interrupt’

