The simplest quantum field theory

In today’s class. we’ll analyze the simplest quantum field theory and see that its quan-
tum states match up exactly with what we would expect from a physical system whose
states include arbitrary numbers of particles.

Particles in one dimension

Imagine that we have a cavity with two ends at z = 0 and z = L. Let’s try to figure
out the possible energies for photons in the cavity with no momentum in the y or 2
directions. (In order that zero y and z momentum is allowed, we can either imagine
that the cavity is very large in the y and z directions, or that we have some periodic
boundary conditions in these directions.)

Assuming that the two ends of the cavity are perfect conductors so that
the electric field must vanish there, what are the allowed wavelengths for
classical electromagnetic plane waves in the cavity along the z direction?

l/,\l V\/l M oneral l - ZC
A=t J | M7 hn

AZZL '/\: L -

Wi

Can you write a general formula for the allowed energy of a state with
an arbitrary number of photons?(Hint: According to Einstein, a light wave at
frequency f is composed of photons with individual energies hf.)
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The field theory

A FIELD THEORY is a physical system whose classical configurations are described
by a FIELD, i.e. a function of space and time. The most familiar examples of fields
are electric and magnetic fields, but simpler systems, such as waves on a string, are
also described using ficlds (e.g. the displacement of a string as a function of position
along the string). For now, we’ll consider just such a system, where we have a function
¢(z,t) obeying boundary conditions

d(r=0,t)=¢(x=L,t) =0 (1)
and satisfying the usual wave equation
¢ 9%

Physically, ¢ might represent the displacement of a stretched string (e.g. a guitar
string) with two fixed endpoints that is allowed to vibrate in one transverse direction.
In this case, p and 7 would be the mass density and tension of the string. The energy
of such a system is given by
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Our goal is to derive the allowed quantum mechanical energies for such a system.

This looks very different from a single harmonic oscillator, electron in a hydrogen
atom, or other simple systems vou first considered in quantum mechanics. In particular,
the classical system here (i.e. the string) is described by a field rather than a finite
set of coordinates (as we have for a system of particles). However, we will now see
that the physics is more familiar than you think. The key step is to recall that any
function obeying boundary conditions (1) can be written as a sum of sine functions

(in musical language, any note can be decomposed into a set of harmonics) i.e. in a
Fourier decomposition.

Write an expression showing how ¢(x,t) can be written as a sum of sine

functions.
Gt = S {1) sin ()




We now simply want to change variables from the field ¢(z) to the variables ¢,
which give the amplitude of the nth sine wave in the Fourier decomposition.

Using the expressions above for the wave equation and the energy in the
field, write the equation of motion for each ¢, and write an expression for
the energy of the system in terms of the ¢, and their time derivatives. You
may find the following useful:

/7r sin(ma) sin(nx) = zémn /7r cos(mx) cos(nz) = zém_n .
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Equivalence to a system of harmonic oscillators

One of the simplest systems to study in quantum mechanics is the harmonic oscillator,
which classically has equation of motion

I =—-wux

For a collection of harmonic oscillators with masses m, and frequencies w,, the total
energy is

1
E = Z{ My, +2mnw2x2 .

You should now be able to see that in terms of the ¢,, variables, the equations of motion
and the energy for our string are exactly the same as those for a collection of harmonic
oscillators.

What masses and freqencies do we need to choose for a collection of har-
monic oscillators so that the equations of motion and the classical expression
for the energy will be exactly the same as for the string?
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Quantum mechanically, what are the allowed energies for such a system of
harmonic oscillators, relative to the ground state energy? Can you write a
general formula for the allowed energies?
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How do your expressions for the last 4smm question# compare with your
answer# from the first page?

exaCHy te <same }{' e ;(Q?A-H:/ F <> C

4 7 T
{r)(“‘)— U‘F V2 "95.}
veloedy ot B g

WAl S 9




Hopefully. what you’ve learned so far is that our field theory is mathematically
equivalent at the classical level to a system of harmonic oscillators, and that this
system of harmonic oscillators has the same quantum energy spectrum as a system with
arbitrary numbers of photons. If you believe the quantum energy spectrum of the field
theory is really the same as the quantum energy spectrum of the harmonic oscillators,
then we have managed to show that our simple quantum field theory has the
same quantum spectrum as a system with arbitrary numbers of particles.

But is the quantum spectrum of our field theory really the same as the quantum
spectrum of the set of harmonic oscillators? The answer must be yes, since the rules
for quantizing a classical system depend only on the action (or Lagrangian) for the
system, and our two systems with the same equations of motion and energy must also
have the same action. Nevertheless, it may be helpful to review the formal procedure:

To quantize the system, we define “momenta” p, = M b,! and rewrite the energy
in terms of ¢, and p, to get the Hamiltonian:

H= Z{—— + Mwnfpn}

In the quantum picture, the “coordinates” ¢, and the corresponding momenta p,, are
operators obeying the fundamental commutation relation

[¢n7pn] =1th.

As with any system of harmonic oscillators, the energy eigenstates are obtained by
acting on a ground state with creation operators

1 .

where the energy coming from each individual oscillator is

a

!The general rule is that we should write down the Lagrangian that gives the desired equation of

motion and define the momentum corresponding to any variable g as p = ‘;—5.




