Transition amplitudes

Consider a quantum field theory with Hamiltonian H = Hy + Hy where Hy represents
the part quadratic in the fields. The interacting part of the Hamiltonian can lead to
transitions which change the number and/or properties of the particles in our state.
Here, we would like to derive a convenient formula for the probability amplitudes
associated with such transitions.

Even though our theory is interacting, it will still be convenient to use a basis of
states inherited from the free Hamiltonian. 'We’ll imagine that we have some eigenstate
of the free Hamiltonian Hy at time ¢ = 5. Then we evolve forward in time and ask for
the probability amplitude that at time # we will find some other basis element if we
measure the system. More general transition amplitudes can be expressed in terms of
these ones involving the basis elements.

Q: To start, write down a basis of energy eigenstates for the free Hamilto-
nian H,.
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Assume that the states in the previous question are defined at ¢+ = 0. It will be
convenient below to use a basis for the states at other times which is just the previous
basis evolved forward to the new time ¢ using the free Hamiltonian Hy.

Q: If |'¥( = 0)) is one of the basis elements from the previous question, write
a formula for the corresponding basis element | (1)) at time t.
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Q: Now, suppose we have a general state |U) at ¢ = t;. What is probability
amplitude that if we measure the system at time t, we will find state |¥,)
(assuming that this state is an eigenstate corresponding to the possible
result of a measurement)?
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Using your answers from the previous questions, the transition amplitude from a
basts element [W;{#)) at time fy to the basis state |¥a(t)) at time ¢ can be written as

(T2(0)U(F,10)1 W1 (0)) -

Q: Write a formula for U(%,tp) in terms of the Hamiltonians H; and H, and
the times ¢ and ¢,.
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We now want to write U(z,%¢) in a more useful form. Let’s define the time-dependent
operator H(t) by

H](t) = EiHotHIB_iHot .
From the definition, we can see that H;(t) is obtained from H; simply by replacing
the fields ¢(z) with the time-dependent fields ¢{z,{) we have defined before. To go
further, let’s see what U looks like for infinitesimal times.

Q: For t = to+ dt, write a formula for U(t, 1), expanded to order d¢. Express
the result in terms of the time-dependent ;.
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Q): Reexpress this in terms of an exponential that agrees with your previous
result up to order dt2.
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Now, the evolution over a finite time can be obtained by breaking up the time
interval into many parts of size df, and writing

Ult,to) = Lim U(t, ¢ — dt)U (¢ — dt, ¢ — 2dt) - -- U (10 + d, £0) (1)

Q: Rewrite the right-hand-side of this equation using your exponential ex-
pression for U(t + dt,t).
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The above expression defines what is known as the time-ordered exponential:
Uit ) = T {e—z‘f:o Hr(t)dt} .

In practice, it is much more convenient to have an expression for this expanded order
by order in H;. To obtain this (and to see why the time-ordered exponential is written
in this way) start again with (1), but now write it out in terms of the infinitesimal
expression U = 1+ ... you derived above and write down all terms in (1) that
are linear in H;. Express the complete set of these in terms of an integral.
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Q: Now, in the same way, write down the terms in (1) that are quadratic
in H;. Try to express this set of terms in terms of a double integral. Hint: be
careful about the limits on your integrals, and keep in mind that H;(t1) and Hi{ls) do
not commute with each other.
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QQ: Can you figure out an expression for the terms in (1) that are of order

7 in H]?
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