
Building Invariants from Spinors

In the previous section, we found that there are two independent 2× 2 irreducible rep-
resentations of the Lorentz group (more specifically the proper orthochronous Lorentz
group that excludes parity and time reversal), corresponding to the generators
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where σi are the Pauli matrices (with eigenvalues ±1). This means that we can have
a fields ηa or χa with two components such that under infinitesimal rotations
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while under infinitesimal boosts
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We also saw that there is no way to define a parity transformation in a theory with
η or χ alone, but if both types of field are included, a consistent way for the fields to
transform under parity is η ↔ χ. In such a theory, we can combine these two fields
into a four-component object

ψα =

(
ηa
χa

)
, (1)

which we call a Dirac spinor. We would now like to understand how to build Lorentz-
invariant actions using Dirac spinor fields.

Help from quantum mechanics

Consider a spin half particle in quantum mechanics. We can write the general state of
such a particle (considering only the spin degree of freedom) as

|ψ⟩ = ψ 1
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2
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or, in vector notation for the Jz basis, ψ =

(
ψ 1
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)
. Under an small rotation, the

infinitesimal change in the two components of ψ is given by

δψ = ϵ
i

2
(σi)ψ (2)

which follows from the general result that the change in any state under an infinitesimal
rotation about the i-axis is

δ|ψ⟩ = ϵiJ i|ψ⟩ .



The rule (2) is exactly the same as the rules for how the two-component spinor fields
transform under rotations. Thus, we can understand how to make rotationally invariant
quantities with spinor fields if we know how to make rotationally invariant quantities
in this quantum mechanics system.

In quantum mechanics, a basic quantity that is invariant under any symmetry
transformation is the inner product ⟨ψ1|ψ2⟩ between state vectors. Translating to the
spin-z basis, we can say that if ψ1 and ψ2 are the explicit two-component vectors
representing any two states, that under a rotation, the quantity

ψ†
1ψ2 (3)

is invariant. If we consider more generally the four quantities ψ†
aψb, what we have seen

is that one linear combination of these four quantities is invariant upon performing a
rotation. It is easy to show that the remaining three linearly independent quantities
are mixed together by rotations in the same way as the three components of a vector.
Explicitly, if we write

ψ†
1σ

iψ2 ,

these three quantities rotate like an ordinary vector when we perform a rotation. This
is simplest to see in the case where ψ2 = ψ1, in which case the three quantities are
simply the expectation values of J i for i = x, y, z.

Back to field theory

Since the quantity (3) is invariant and since fields η and χ transform in exactly the
same way as ψ1 and ψ2 under rotations, it follows immediately that the quantities η†η,
η†χ, χ†η, χ†χ are all invariant under rotations. We can check this explicitly using the
transformation rules given above. We can also use these rules to check which of these
four quantities is also invariant under a boost. As an example, under a small boost,
we have

δ(χ†χ) = δχ†χ+ χ†δχ

= −ϵ1
2
χ†(σi)†χ− ϵ

1

2
χ†(σi)χ

= −ϵχ†σiχ (4)

where we have used that σ†
i = σi. Thus, χ†χ is not invariant under boosts. Similarly,

we find that η†η is not invariant under boosts, but η†χ and χ†η are both invariant.
Recalling that a parity transformation acts as η ↔ χ we find that these two quantities
are not independently invariant under parity transformations, but the combination

η†χ+ χ†η

is invariant under rotations, parity transformations, and boosts. This is our first exam-
ple of a possible Lorentz-invariant and parity invariant term built from spinor fields.1

1Here, we really mean that this quantity transforms like a scalar field.



We can write this directly in terms of the Dirac spinor field (1), by noting that it
is a linear combination of the quantities ψ∗

αψβ. Specifically, we have

η†χ+ χ†η =Mαβψ
∗
αψβ ψ

†Mψ

where M is the 4× 4 matrix

M =

(
0 11
11 0

)
≡ γ0 .

We have chosen to call this matrix γ0 for reasons that will become apparent. Using
this notation, our invariant quantity is

ψ†γ0ψ .

Making the further definition that

ψ̄ = ψ†γ0 ,

we can write the invariant quantity simply as

ψ̄ψ

Other quantities with two spinors

For constructing actions, it will also be useful to understand how other quantities built
from two spinor fields transform under Lorentz transformations. The sixteen quan-
tities ψ∗

αψβ, will mix together when we perform a Lorentz transformation2 We have
already seen that one linear combination, ψ̄ψ is invariant under Lorentz transforma-
tions. To understand how the remaining quantities transform, we begin by recalling
the transformation (4) for the rotationally invariant quantity χ†χ under a boost in the
i-direction:

δ(χ†χ) = −ϵχ†σiχ .

This transformation rule looks just like the transformation rule

δt = −ϵxi

for the time coordinate under a boost in the i-direction, if we associate t → χ†χ and
xi → χ†σiχ. This suggests that the four quantities (χ†χ, χ†σiχ) transform as a four-
vector under under rotations and boosts. We can verify this by checking that the

2To see this, note that under a Lorentz transformation,

ψ∗
αψβ →M(Λ)∗ασM(Λ)βτψ

∗
σψτ ≡ M(αβ),(στ)ψ

∗
σψτ .

The matrix M defines some representation of the Lorentz group known as the TENSOR PRODUCT
representation of M and M∗, since M =M†⊗M . This representation is reducible, which means that
we can split the sixteen quantities ψ∗

αψβ into subsets such that Lorentz transformations only mix the
quantities in a subset.



quantities χ†σiχ transform under boosts in the same way as the spatial components of
a four-vector. In a similar way, we find that the four quantities (η†η,−η†σiη) transform
as a four-vector under rotations and boosts.

A true four-vector should also transform under parity transformations in the same
way as the coordinates, that is (t, xi) → (t,−xi). From the two potential four-vectors
we have just found, one linear combination has this property, namely(

η†η + χ†χ
−η†σiη + χ†σiχ

)

Each of these four quantities is a linear combination of the quantities ψ†
αψβ. Using the

definition of γ0 above, and defining three new 4× 4 matrices γi as

γi =

(
0 σi

−σi 0

)

it is easy to check that
η†η + χ†χ = ψ†ψ = ψ̄γ0ψ ,

while
−η†σiη + χ†σiχ = ψ̄γiψ ,

In summary, we have found so far that ψ̄ψ is a scalar quantity while the four quantities
ψ̄γµψ (µ = 0, i) transform as a four-vector under Lorentz transformations.

Building tensors with gamma matrices

The fact that ψ̄ψ is a scalar quantity under Lorentz transformations implies that if ψ
transforms like

ψ →MD(Λ)ψ

under a general Lorentz transformation (‘D’ stands for Dirac spinor), then ψ̄ must
transform as

ψ̄ → ψ̄M−1
D (Λ) .

With these transformation rules, it follows that under a Lorentz transformation

ψ̄γµψ → ψ̄M−1
D (Λ)γµMD(Λ)ψ .

But we found earlier that ψ̄γµψ transforms as a vector quantity, which means that

ψ̄γµψ → Λµ
νψ̄γ

νψ .

For these two transformation rules to agree with each other for any Λ, it must be that

M−1
D (Λ)γµMD(Λ) = Λµ

νγ
ν .

Using this, it immediately follows that quantities with additional γ matrices also
transform like tensors. We have

ψ̄γµ1 · · · γµnψ → ψ̄M−1
D (Λ)γµ1 · · · γµnMD(Λ)ψ



= ψ̄M−1
D (Λ)γµ1MD(Λ) · · ·M−1

D (Λ)γµnMD(Λ)ψ
= Λµ1

ν1 · · ·Λµn
νnψ̄γ

ν1 · · · γνnψ .

These tensors cannot all be independent of one another, since they are all linear com-
binations of only sixteen independent quantities ψ∗

αψβ. The reason is that products of
γ matrices can be simplified using the relations

γµγν + γνγµ = 2ηµν114×4 , (5)

which can be checked from the definition of γµ. So for example, the tensor

ψ̄γµγνψ ,

appears to have 16 independent components, but if we split it into a symmetric part

Sµν = ψ̄
1

2
(γµγν + γνγµ)ψ

and an antisymmetric part

Aµν = ψ̄
1

2
(γµγν − γνγµ)ψ ,

then the six independent components of this antisymmetric tensor are independent
of the scalar and vector quantities constructed above, but the symmetric part can be
rewritten using (5) as

Sµν = 2ηµνψ̄ψ .

In a similar way, for tensors built using more γ matrices only the completely antisym-
metric combinations give new independent terms. In four dimensions, the quantity

ψ̄
1

6
(γµγνγλ − γνγµγλ + . . .)ψ

has four independent components, while the tensor

ψ̄
1

24
(γµγνγλγσ − γνγµγλγσ + . . .)ψ

just has a single independent component (for this to be non-zero, we must have
{µ, ν, λ, σ} = {0, 1, 2, 3} otherwise everything cancels). Explicitly, we have

ψ̄
1

24
(γµγνγλγσ − γνγµγλγσ + . . .)ψ = ϵµνλσψ̄γ0γ1γ2γ3ψ .

It is standard to define
γ5 = iγ0γ1γ2γ3

so that the single independent quantity that we get by including an antisymmetric
product of four gamma matrices between ψ̄ and ψ may be written

ψ̄γ5ψ



This quantity transforms like a scalar under rotations and boosts, but changes its
sign under parity transformations. This type of representation of the Lorentz group
(including parity) is known as a PSEUDOSCALAR. Similarly, the four independent
quantities that we get from antisymmetric products of three gamma matrices between
ψ̄ and ψ together transform like a vector under rotations and boosts, but are invariant
under parity transformations (unlike a proper four-vector). Such a representation is
known as a PSEUDOVECTOR. Using the identity

1

6
(γµγνγλ − γνγµγλ + . . .) = −iϵµνλσγσγ5

we find that the independent components of this pseudovector can be written as

ψ̄γµγ5ψ .

Summary

In summary, the sixteen independent quantities ψ∗
αψβ may be split into five different

irreducible representations of the Lorentz group,

ψ̄ψ scalar 1 independent component
ψ̄γµψ vector 4 independent components
ψ̄σµνψ antisymmetric tensor 6 independent components
ψ̄γµγ5ψ pseudovector 4 independent components
ψ̄γ5ψ pseudoscalar 1 independent component

(6)

where we have defined

σµν =
i

2
[γµ, γν ] .

Starting from these tensor quantities, we can construct scalar terms in the same way as
for scalar/vector/tensor theories, i.e. by making sure each vector index is contracted
with another vector index on a field or derivative.

Invariants without complex conjugation

We have focused on terms with two spinors of the form ψ∗
αψβ, but we could have also

considered terms built from the sixteen quantities ψαψβ without complex conjugation.
As before, we find that one linear combination of these terms is a Lorentz scalar,

ψTCψ

where C is a matrix chosen so that

MT (Λ)C = CM−1(Λ) .

With our choice of gamma matrices, we can check that an appropriate choice is

C =

(
iσ2 0
0 iσ2

)
.



As above, we can then insert additional gamma matrices to get other types of tensors:

ψTCψ scalar 1 independent component
ψTCγµψ vector 4 independent components
ψTCσµνψ antisymmetric tensor 6 independent components
ψTCγµγ5ψ pseudovector 4 independent components
ψTCγ5ψ pseudoscalar 1 independent component

(7)

If we are interested in describing fermions carrying a conserved charge (as is commonly
the case), such terms cannot be used in an Lagrangian density, since they are not
invariant under the ψ → eiαψ symmetry that gives rise to the conserved charge.


