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1 potential is

1 1 d%; 1

= V35 any? 2By M = o)V (28 - E),

; Is the particle’s initial velocity. This formula is a natural modification
. Integrate over ipy| to find a simple expression for do /dS.

te to the case of electron scattering from a Coulomb potential (A% =
- Working in the nonrelativistic limit, derive the Rutherford formula,
do ol 7%
dQ amZvisint(p/2)’
few calculational tricks from Section 5.1, you will have no difficulty
1g the general cross section in the relativistic case; see Problem 5.1.)

Chapter 5

megmﬁﬁmw% Processes of
Quantum Electrodynamics

Finally, after three long chapters of formalism, we are ready to perform some
real relativistic calculations, to begin working out the predictions of Quantum
Electrodynamics. First we will return to the process considéred in Chapter 1,
the annihilation of an electron-positron pair into a pair of heavier fermions.
We will study this paradigm process in extreme detail in the next three ssc-
tions, then do a few more simple QED calculations in Sections 5.4 and 5.5.
The problems at the end of the chapter treat several additional QED pro-
cesses. More complete surveys of QED can be found in the books of Jauch
and Rehrlich (1976) and of Berestetskii, Lifshitz, and Pitaevskii (1982).

5.1 ete™ — ptp~: Introduction

The reaction eTe™ — u?u~ is the simplest of all QED processes, but also
one of the most important in high-energy physics. It is fundamental to the
understanding of all reactions in e*e™ colliders, and is in fact used o calibrate
such machines. The related process ete™ -+ ¢ (a quark-antiquark pair) is
extraordinarily useful in determining the properties of elernentary particles.

- In this section we will compute the unpolarized cross section for ete~ —
p*p~, to lowest order. In Chapter 1 we used elementary arguments to guess -
the answer (Eq.(1.8)) in the limit where all the fermions are massless. We
now relax that restriction and retain the muon mass in the calculation, Re-
taining the electron mass as well would be easy but pointless, since the ratio
e /Ty, 7= 1/200 is much smaller than the fractional error introduced by ne-
glecting higher-order terms in the perturbation series.

Using the Feynman rules from Section 4.8, we can at once draw the dia-
gram and write down the amplitude for our process:

..&@.S\_gvﬁm@u AI[M.M%HV mi?wﬁlﬂ.sevei@d
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Rearranging this slightly and leaving the spin superscripts implicit, we have

iM(e™(p)et (B) — B (R (k) = WM?@‘:;@U COIRICO)RNCEY

This answer for the amplitude M is simple, but not yet very illuminating.

To compute the differential cross section, we need an expression for |M|?,
so we must find the complex conjugate of M. A bi-spinor product such as
Py*u can be complex-conjugated as follows:

Tui_pcv* = EAQJIQGVJ = QIQtvfce = ity = Gy,
(This is another advantage of the ‘bar’ notation.) Thus the squared matrix
element is

M = [m Y u(p)u(p)y” e@ vv ?E\?e?\vmg\iccgv. (5.2)

At this point we are still free to specify any particular spinors «*{p),
% (p'), and so on, corresponding to any desired spin states of the fermions.
In actual experiments, however, it is difficult (though not impossible) to re-
tain control over spin states; one would have §o prepare the initial state from
polarized materials and/or analyze the final state using spin-dependent mul-
tiple scatfering. In most experiments the electron and positron beams are
unpolarized, so the measured cross section is an average over the electron and
positron spins s and s’. Muon detectors are normally blind to polarization, so
the measured cross section is a sum over the muon spins r and .

The expression for | M|* simplifies considerably when we throw away the
spin information, We want to compute -

WM WM M MH_.\S?_% lﬁﬁiw.

The spin sums can be performed using the completeness relations from Sec-
tion 3.3:

SeeEe =fm S r@re =g-m (63

Working with the first half of (5.2), and writing in spinor indices so we can
freely move the v next to the ¥, we have

M Qu Vg (p)i ocj&f )=

/
5,8

- SVQQQMQ G&n_u Su@ana

— trace (¥ — my“(s+ m)7"]-

Evaluating the second half of (5.2) in the same way, we arrive at the desired
simplification:

1 2 m& d 7 4

520 IMP = )y Wmay ] [ —mn |

spins

el eoTRA e e e R 3 I Fee T R & i, s Iese) R

Cne=0,1,2,.
-~ case ig fairly easy: tr 1 = 4. The trace of one -y matrix is &mo easy. From ﬁrm
- explicit form of the matrices in the chiral representation, we have
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" The spinors w and v have disappeared, leaving us with a much cleaner expres-

gion in terms of v matrices. This trick is very general: Any QED amplitude
nvolving external fermions, when squared and summed or averaged over spins,

‘can be converted in this way to traces of products of Dirac matrices.

o H..mnm Téchnology

‘This fast step would hardly be an improvement if the traces had to be la-

boriously computed by brute force. But Feynman found that they could be
worked out easily by appealing to the algebraic properties of the v matrices.

:Since-the evaluation of such traces occurs so often in QED calculations, it is

worthwhile to pause and attack the problem systematically, once and for all.
‘We would like to evaluate traces of products of n mmEEm matrices, Sroum
{(For the present problem we need n = 2,3,4.) The n =

)
troyt = tr h%t qo v =0,

. .. It .w..m..,smmmE to prove this result in a more abstract way, which generalizes to
an arbitrary odd number of v matrices:

tr Ay = tr ity since (49)* =

= —traPyP®  since {y*0) =0
= —tr ity using cyclic property of trace
= —tryH.

Since the trace of 4* is equal to minus itself, it must vanish. For n y-matrices

“we would get n minus signs in the second step (as we move the second +® all

the way to the right), so the trace must vanish if n is odd.
To evaluate the trace of two v matrices, we again use the anticommutation
properties and the cyclic property of the frace:

byt = (26" - 1 7o)
= 8¢" —tryty”

(anticommuatation)
(cyclicity)

Thus tr yty¥ = 4g*¥. The trace of any even number of y matrices can be
evaluated in the same way: Anticommute the first -y matrix all the way to the
right, then cycle it back to the left. Thus for the trace of four v matrices, we
have

= tz(2¢" 777 — ¥y}

= tr(2g47 9Py — 9 2gHP AT + A NP2 — AP

tr(y#+7*7)
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Using the cyclic property on the last term and bringing it to the left-hand
side, we find
tr(yi Y ) = g tr P — g ey + g tryP P
= AQE\@E — ghPg’T mtqm:nv.

In this manner one can always reduce a trace of n y-matrices to a sum of
traces of (n — 2) y-matrices. The case n = 6 is easy to work out, but has
fifteen terms (the number of ways of grouping the six indices in pairs to make
terms of the form g gf?g*#). Fortunately, we will not need it in this book.
{If you ever do need to evaluate such complicated traces, it may be easier to
learn to use one of the several computer programs that can perform symbolic
manipulations on Dirac matrices.)

Starting in Section 5.2, we will often need to evaluate traces involving 5.
Since ¥° = iv¥y*y%y%, the trace of 4 times any odd number of other 5
matrices is zero. It is also easy to show that the trace of 4% itself is zero;

try® = tr(v%7%%) = Iﬁ.fo%mqov = —tr{y"y"®%} = ~tr4®,
The same trick works for tr(#y"+°), if we insert two factors of v for some a
different from both y and v, The first nonvanishing trace involving 4% contains
four other v matrices. In this case the trick still works unless every ~ matrix
appears, so tr(y#y"yPy°~") = 0 unless (uvpo) is some permutation of (0123).
From the anticommutation rules it; also follows that interchanging any two of
the indices simply changes the sign of the trace, so tr{y*y*4”+°+5) must be
proportional to ¢#¥??. The overall constant turns out to be —44, as you can
easily check by plugging in (pvpe) = (0123}, ’
Here is a summary of the trace theorems, for convenient reference:

tr(1) =4
tr{any odd # of 4's) =0
tr(yy") = dgh”
(Y9 rPy7) = 4(g" 9" — g*P " + g7 g*r) (5.5)
tr(7°) =0 \
tr(yPyy%) =0
by Py ) = —dietee
Expressions resulting from use of the last formula can be simplified by means

of the identities
umJ.m

Eafiys = —24
umﬁ:mQF& = —B6o¥, (5.6)
mp_mttmo%uq = Im@t_nmcq - mtqm_\uv

All of these can be derived by first appealing to symmetry arguments, then
evaluating one special case to determine the overall constant.
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Another useful identity allows one to reverse the order of all the v matrices
inside & trace:

(YT ) = (T ). {5.7)
To prove this relation, consider the matrix € = y0+*? (essentially the charge-
conjugation operator). This matrix satisfies C° = 1 and Cy*C = ~(v*)7.

Thus if there are n y-matrices inside the trace,
tr(yHy” ) =t(CAHC GO )
= (=1 e[ T )T ]
= tr{- - 1"*),
since the trace vanishes unless n is even. It is easy to show that the Hoﬁwﬁmw_
identity (5.7) is also valid when the trace contains one-or more factors of °.
When two v matrices inside a trace are dotted together, it is easiest to
eliminate them before evaluating the trace. For example,
Y = Gty = W.SETXF" 7'} = gug® = 4. (5.8)

The following contraction identities, all easy fo prove using the anticommu-
tation relations, can be used when other -y matrices lie in between:

Y

Yy = 2y .
Yy v = 4g"7 (5.9)
YA AN = =21
Note the reversal of order in the last identity.

All of the v matrix identities proved in this section are collected for ref-
erence in the Appendix. ’

. Unpolarized Cross Section

We now return to the evaluation of the squared matrix element, Eq. {5.4).
The electron trace is

tr[(# — me )V (B +me)y | = 4[pY” + 7P — g*(p-p + mI)].

The terms with only one factor of 7n vanish, since they contain an odd number
of v matrices. Similarly, the muon trace is

tr (K + mp e (B —mp)y.] = 4Rkl + Rk, — g, (k-K +mi)].

From now on we will set m, = P as discussed af the beginning of ﬂ,ﬂm section
Dotting these expressions together and collecting terms, we get the simple
result

S IME =2 [ K+ B B )] (g

spins
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To obtain a more explicit formula we must specialize to a particular frame
of reference and express the vectors p, p', k, &', and ¢ in terms of the basic kine-
matic variables—energies and angles—in that frame. In practice, the choice
of frame will be dictated by the experimental conditions. In this book, we will
usually make the simplest choice of evaluating cross sections in the center-of-
mass frame. For this choice, the initial and final 4-momenta for eTe™ — ptp~
can be written as follows:

k= (Ek)
k| = \/EZ —m2
p=(BE) N
— > Bf k- %= |k|cosd
¢ = (F,—E2)
K = (B -k
To compute the squared matrix element we need
> = (p+p) = 4E% py = 2E%

pk=p -k =E—Elk|cos8; p-k =p k=E"+ Elklcosf.

We can now rewrite Eq. (5.10) in terms of E and ¢: -

1 g 8e*
i Wu MP = FNE — [K| cos )2 + E2(E + k| cos 8)2 + m,swmm_
. m2 m2
—e TH + 55 )+ (1= B ) cos? L. (5.11)

All that remains is to plug this expression into the cross-section formula
derived in Section 4.5. Since there are only two particles in the final state and
we are working in the center-of-mass frame, we can use the simplified formula
(4.84). For our problem |ug — vg{ = w@b& E4 = Ep = E.,/2, so we have

do 1 ik 1 9
0 = 5B TontE 1 o M

spins

\ - . ) (5.12)
. _ M M T\ oos?
AEZ, mm?+muv+m - o) o’
Integrating over df), we find the total cross section:
dma? ,Sw 1 Sm :
Tiotal = 3EZ 1- B2 A“_. + m|.m_|mv . (5.13)
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Figure 5.1. Energy dependence of the total cross section for ete™ — utu™,
compared to “phase space” energy dependence.

In the high-energy limit where £ > m,, these formulae reduce to those given
in Chapter 1:
do o
—_— —
dQ Eym, 4E

2
cm

" h.rﬂn._m 3rmund
Ttotal mw”.: m.mmg AH - m AMV — .v .

(1 + cos® 8);
(5.14)

Note that these expressions have the correct dimensions of cross sections.
In the high-energy limit, Eepy, is the only dimensionful quantity in the problem,
so dimensional analysis dictates that opom o FLe. Since we knew from the
beginning that oyota; & o, we only had to work to get the factor of 4r/3.

The energy dependence of the total cross-section formula (5.13) nea
threshold is shown in Fig. 5.1. Of course the cross section is zero for E., <
2my. Tt Is interesting to compare the shape of the actual curve to the shaps
one would obtain if [M[? did not depend cn energy, that is, if all the energ;

‘dependence came from the phase-space factor k|/E. To test Quantum Elec-

trodynamics, an experiment must be able to resolve deviations from the naive
phase-space prediction. Experimental results from pair production of botl
p and T leptons confirm that. these particles behave as QED predicts. Fig:
ture 5.2 compares formula (5.13) to experimental measurements of the v+~
threshold. . ! )

Before discussing our result further, let us pause to summarize how we
obtained it, The method extends in a straightforward way to the caleulation
of unpolarized cross sections for other QED processes. The general procedur:
is as follows: e
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Figure 5.2. The ratio o(ete™ — vt~ )/o(ete™ — utp~) of measured
cross seciions near the threshold for 7+7~ pair-production, as measured
by the DELCO collaboration, W. Bacine, ef. al., Phys. Rev. Lett. 41, 13
(1978). Only a fraction of 7 decays are En_zmm& hence the small overall
scale. The curve shows a fit to the theoretical formula (5.13), with a small
energy-independent background added. The fit yields m, = 1782+2 MeV.

1. Draw the diagram(s) for the desired process. .

2. Use the Feynman rules to write down the amplitude M.

3. Square the amplitude and average or sum over spins, using the complete-
ness relations (5.3). (For processes involving photons in the final state
there is an analogous completeness relation, derived in Section 5.5.)

4. Evaluate traces using the trace theorems (5.5); no:mnﬁ terms and simplify
the answer as Esnw/mm possible.

5. Specialize to a particular frame of reference, and draw a picture of the

kinematic variables in that frame. Express all 4-momentum vectors in

terms of a suitably chosen set of variables such as E and 6.

Plug the resulting expression for |M|? into the cross-section formula

(4.79), and integrate over phase-space variables that are not measured

to obtain a differential cross section in the desired form. (In our case

these integrations were over the consirained momenta k' and |k|, and

were performed in the derivation of Eq. (4.84).)

While other caleulations (especially those involving loop diagrams) often re-

quire additional tricks, nearly every @HU calculation will involve the basic

procedures outlined here.

o
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Production of Quark-Antigquark Pairs

The asymptotic energy m%mb&mznm of theete™ — utu~ cross-section formula
sets the scale for all ete™ annihilation cross sections. A particularly important
example is the cross section for

eTe™ — hadrons,

that is, the total cross section mon production of any number of strongly inter-
acting particles.

In our current understanding of the strong interactions, given by the the
ory called Quantum Chromodynamics (QCD)}, all hadrons are composed o
Dirac fermions called quarks. Quarks appear in a variety of types, called fla
vors, each with its own mass and electric charge. A quark also carries ar
additional quantum number, color, which takes one™of three values. Colw
serves as the “charge” of QCD, as we will discuss in Chapter 17.

According to QCD, the simplest ete™ process that ends in hadrons is

eTe” — g7,

the annihilation of an electron and a positron, through a virtual photon, into «
quark-antiquark pair. After they are created, the quarks interact with one an-
other through their strong forces, producing more quark pairs. Eventually the
quarks and antiquarks combine to form some nutber of mesons and baryons

To adapt our results for muon production to handle the case of quarks
we must make three modifications:

1. Replace the muon charge e with the quark charge Qle].
2. Count each quark three times, one for each color.

3. Include the effects of the strong interactions of the produced quark anc
antiguark.

The first two changes are easy to make. For the first, it is simply necessary t«
know the masses and charges of each-flavor of quark. For u, ¢, and ¢ quark:
we have @ = 2/3, while for d, s, and b quarks we have Q = —1/3. The cross
section formulae are proportional to the square of the charge of the final-stats
particle, so we can simply insert a factor of @2 into any of these formula
to obtain the cross section for production of any particular variety of quark
Counting colors is necessary because experiments measure only the total cros
section for production of all three colors. (The hadrons that are actually de
tected are colorless.) In any case, this counting is easy: Just multiply th
answer by 3.

If you know a little about gm mﬁoum interaction, however, you migh
think this is all a big joke. Surely the third modification is mxﬁmamq difficul
to make, and will drastically alter the predictions of QED. The amazing trutl
is that in the high-energy limit, the effect of the strong interaction, on th
quark production process can Um completely neglected. As we will discusss
Part I1I, the only effect of the strong interaction (in this limit) is to dres
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up the final-state quarks inte bunches of hadrons. This simplification is due
to a phenomenon called asymptotic freedom; it played a crucial role in the
identification of Quantum Chromodynamics as the correct theory of the strong
force.
Thus in the high-energy limit, we expect the cross section for the reaction
ete~ — g to approach 3 - Q2 - dwa?/3EZ, . Tt is conventional to define
4o 6.8 nbarns
lunit of R = = . - (.15
o 3F2,  (Fewm in GeV)2 (5.15)
The value of a cross section in units of R is therefore its ratio to the asymptotic
value of the eTe™ — p+u~ cross section predicted by Eq. (5.14). Experimep-
tally, the easiest quantity to measure is the total rate for production of all
hadrons. Asymptotically, we expect
olete” — hadrons) —»  3- AM@M& R, (5.16)
i

Eom—oo

where the sum runs over all quarks whose masses are smaller than Eom/2.
When E.n/2 is in the vicinity of one of the quark masses, the strong interac-
tions cause large deviations from this formula. The most dramatic such effect
is the appearance of bound states just below Eom = 27y, manifested as very
sharp spikes in the cross section.

Experimental measurements of the cross section for eTe~ annihilation to
hadrons between 2.5 and 40 GeV are shown in Fig. 5.3. The data shows three
distinct regions: a low-energy region in which u, d, and s quark paits are

. produced; a region above the threshold for produetion of ¢ quark pairs; and
a region also above the threshold for & quark: pairs. The prediction {5.16) is
shown as a set of solid lines; it agrees quite well with the data in each region,
as long as the energy is well away from the thresholds where the high-energy
approximation breaks down. The dotted curves show an improved theoretical
prediction, including higher-order corrections from QCD, which we will discuss
in Section 17.2. This explanation of the ete™ annihilation cross section isa
remarkable success of QCD. In particular, experimental verification of the
factor of 3 in (5.16) is one piece of evidence for the existence of color.

The angular dependence of the differential cross section is also observed
experimentally.® At high energy the hadrons appear in jets, clusters of several
hadrons all moving in approximately the same direction. In most cases there
are two jets, with back-to-back momenta, and these indeed have the angular
dependence (1 + cos? 8).

*The basic features of hadron production in high-energy ete™ annihilation are
reviewed by P. Duinker, Rev, Mod. Phys. 54, 325 (1982).
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Figure 5.3. Experimental measurements of the total cross section for the
reaction ete” — hadrons, from the data compilation of M. Swartz, Phys.
Rev. D {to appear). Complete references to the various experiments are given
there. The measurements are compared to theoretical predictions from Quan-
tum Chromodynamics, as explained in the text. The solid line is the simple
prediction {3.16). ’

5.2 ete™ — ptu: Helicity Structure

The unpolarized cross section for a reaction is generally easy to caloulab
(and to measure) but hard to understand. Where does the (1 + cos” 8) angu
lar dependence come from? We can answer this question by computing th
ete™ — utp~ cross section for each set of spin orientations separately.
First we rmust choose a basis of polarization states. To get a sitnple answe
in the high-energy limit, the best choice is to quantize each spin along th
direction of the particle’s motion, that is, to use states of definite helicit;
Recall that in the massless limit, the left- and right-handed helicity state
of & Dirac particle live in different representations of the Lorentz group. W
might therefore expect them to behave independently, and in fact they do.
In this section we will compute the polarized e¥e~ — utp™ cross section
using the helicity basis, in two different ways: first, by vsing trace‘technolog
but, with the addition of helicity projection operators to project out the desire
left- or right-handed spinors; and second, by plugging explicit expressions fc
these spinors directly into our formula for the amplitude M. Thronghout_th

section we work in the high-energy limit where all fermions are effectivél




142 Chapter 5  Elementary Processes of Quantum Electrodynamics

massless. (The calculation can be done for lower energy, but it is much more

difficult and no more instructive.}!
Our starting point for both methods of calculating the polarized cross

section is the amplitude
iM(e (et (B') — 1™ (DT () = %@@i:@u (@Fno@). 61

We would like to use the spin sum identities to write the squared amplitude
in terms of traces as before, even though we now want to consider only one
set of polarizations at a time. To do this, we note that for massless fermions,

the matrices
1+7* (0 0 1-9° (10 :
2 \Ao Hv, 2 T A0 O (5.17)

; are projection operators onto right- and left-handed spinors, respectively. Thus
if in (5.1) we make the replacement

_ _ 1+9°y

o ulp) — 30 (S5 ulp),

the amplitude for a right-handed electron is unchanged while that for a left-
handed electron becomes zero. Note that since

5 5

s (2 )ute) = v 0 (S5 ) reute), (519)
this sarne Teplacement imposes the requirement that v(p) also be a right-
handed spinor. Recall from Section 3.5, however, that the Tight-handed spinor
v{p') corresponds to a lefi-handed positron. Thus we see that the annihilation
amplitude vanishes when both the electron and the positron are right-handed.
In seneral, the amplitude vanishes (in the massless limit) unless the electron
and positron have opposite helicity, or equivalently, unless their spinors have
the same helicity. :

Having inserted this projection operator, we are now free to sum over the
clectron and positron spins in the squared amplitude; of the four terms in the
sum, only one (the one we want) is nonzero. The electron balf of |M]?, for a
right-handed electron and a left-handed positron, is then

Sl (i) = ¥ oS Jat o (L )ute)

spins spins
=l (5 (5]

-elpror ()

The general formalism for S-matrix elements between states of definite helicity is
W EmmmammFmvmmcs?_wmcmaoﬁg.umoov EED.O.é._nw.bzu.mumda.qLEGmmS.
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— w@fﬁt PR — g*pp — s.mptm:@whﬁmv. (5.19

The indices in this expression are to be dotted into those of the muon hal
of the squared amplitude. For a right-handed p~ and a left-handed wt, ar
identical calculation yields

S [ty (2 Yot

apins . -

= 2k, + kb, — Gk B — i, kPR (5.20

Dotting (5.19) into {5.20), we find that the squared matrix element, for egef -
tm_:m. in the center-of-mass frame is

#m» . . .
_.>\:m = |®H. _Hwﬁwu. ».nv@h ' h\v + M@ .ﬂJﬁﬁs ' w& - maﬁt_m.tim.m_to.tﬁmxﬁ.mwntkau_

4
= S [ R K) + oK) R = (B R + R )

4
%@.Sa_s

¢* (1 +cos)”. (5.21

il

il

Plugging this result into (4.85) gives the differential cross section,

do , _ _ , a?
7 (erel — Kart) = 13

2
Jem

{14 cos 3&. (5.22

There is no need to repeat the entire calculation to obtain the othe
three nonvanishing helicity amplitudes. For example, the squared amplitud
for ezef — pph is identical to (5.20) but with +° replaced by —~% on th
left-hand side, and thus €yu0.. replaced by —epus. on the right-hand sid¢
Propagating this sign though (5.21), we easily see that

do , a?

m@hmm&w — pppL) = 152 (1- OOmmuu. {5.2¢
. cm
Similarly, .
do, . + 4 o? 2
glb?.umm — HgHT) = 1E2 (1~ cost)™s
do . . - o2 2 mm.mh
adﬁmhmm > pTHE) = 452 (2 +cos6)”.

{These two results actually follow from the previous two by parity invariance
The other twelve helicity cross sections (for instance, e ef, — uz p}) are zer
as we saw from Eq. (5.18). Adding up all sixteen contributions, and dividir
by 4 to average over the electron and positron spins, we recover the unpolarize
eross section in the massless limit, Eq. (5.14). R
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Figure 5.4. Conservation of angular momentum requires that if the z-

component of angular momentum Is measured, it must have the same value
as initially.

N
=
7

; Note that the cross section (5.22) for epe) — pzp] vanishes at § = 180°.
This is just what we would expect, since for # = 180°, the total angular mo-
mentum of the final state is opposite to that of the initial state (see Figure 5.4).
This completes our first calculation of the polarized ete™ — putp~ cross
sections. We will now redo the calculation in a manner that is more straight-
forward, more enlightening, and no more difficult. We will calculate the arn-
plitude A4 (rather than the squared amplitude) directly, using explicit values
for the spinors and y matrices, This method does have its drawbacks: It forces
: us to specialize to & pareicular frame of reference much sooner, so manifest
b Lorentz invariance is lost. More pragmatically, it is very cumbersome except
in the nonrelativistic and ultra-relativistic limits.
Consider again the amplitude

M= (0 ) (1Eme®). (629

In the high-energy limit, our general expressions for Dirac spinors become

u(p} = Aﬁw Foo z\|m MH +p- MWU
Vs e vaE(_3h ),
o VEE( 3

| | (5.26)
m %Tm ST Li+p-0)

A right-handed spinor satisfies (§ - )¢ = +£, while 2 left-handed spinor has
($-0)¢ = —¢. (Remember once again that for antiparticles, the handedness of
the spinot is the opposite of the handedness of the particle.} We must evaluate
expressions of the form Zv*u, so we need

_ . 0 1N/0 o g 0
K O~k — =
W Ty iT ov Amr av mo q:v. (5.27)

52 ete — utu~: Helicity Structure 145

Thus we see explicitly that the amplitude is zero when one of the spinors is
left-handed and the other is right-handed. In the language of Chapter 1, the
Clebsch-Gordan coefficients that couple the vector photon to the product of
such spinors are zero; those coefficients are just the off-block-diagonal elements
of the matrix v*v* (in the chiral representation).

Let us choose p and p’ to be in the +z-directions, and first consider the
case where the electron is right-handed and the positron is left-handed:

z
z

Thus for the electron we have { = Acu corresponding to spin up in the 2

direction, while for the positron we have £ = AL also oonmm@oﬁmwbm to (phys-
ical) spin up in the z-directon. Both particles have (f-o ) = +£, so the spinors
are :

0 0
0
ulp) =v2E | | [} v(p') = V2E m _ (5.28)
0 -1
The electron half of the matrix element is therefore
_ 1
o(p' ) ulp) = 2E (0, ~1)o* @ = —2E(0,1,4,0). (5.29'

We can interpret this expression by saying that the virtual photon has cireula
polarization in the --z-direction; its polarization vector is ey = (1/v/2)(&+i)

Next ‘we must calculate the muon half of the matrix element. Let the g~
be emitted at an angle & to the z-axis, and consider first the case where it is
right-handed {and the pt is therefore left-handed):

.r_.+ \

, 1
To caleulate %{k)y*v(k") we could go back to expressions (5.26), but then i
would be necessary to find the correct spinors £ corresponding to polarizatior
along the muon momentun. It is much easier to use a trick: Since any* ‘expres

sion of the form 1+*¢ transforms like a 4-vector, we can just rotate the resul
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(5.29). Rotating that vector by an angle # in the zz-plane, we find
kyro(k) = [k )y ulk)]”
= [—2E(0,c080,1,5in8)]" (5.30)
= —2F (0,cos8, —1,sin &).

This vector can also be interpreted as the polarization of the virtual pho-
ton; when it has a nonzero overlap with (5.29), we get a nonzero amplitude.
Plugging (5.29) and (5.30) into (5.25), we see that the amplitude is

2
M(eged - ppuf) = Mmﬁmm_vmﬂi cosf — 1) = —e%(1 + cosd), (5.31)

in agreement (up to a sign) with (1.6), and also with (5.21). The differential
cross section for this set of helicities can now be obtained in the same way as
above, yielding {5.22).

We can caleulate the other three nonvanishing helicity amplitudes in an
analogous manner. For a left-handed electron and a right-handed positron, we
easily find

3(p I ulp) = —2E (0,1,-1,0) = -2 - V2.
Perform a rotation to get the vector corresponding to a left-handed p~ and a
right-handed ut:
a(k)y*u(k') = —2E (0, cos8,4,8in 6).
Putting the pieces together in various ways yields the remaining amplitudes,

Mlezeh = pguh) = ~e*(1 + cosf; o
Menef - uiih) = Mlezeh — iut) = —eA(1 - cos).

5.3 ete” — ptp~: Nonrelativistic Limit

Now let us go to the other end of the energy spectrum, and discuss the re-
action ete™ — ptp~ in the extreme nonrelativistic limit. When E is barely
larger than m,,, our previous result (5.12) for the unpolarized differential cross
section becomes

do o’ m;, o? |k

= - E o Ly 5.33
40 ko 2E2_ E2 2ELE (5:33)

We can recover this result, and also learn something about the spin de-
pendence of the reaction, by evaluating the amplitude with explicit spinors.
Once again we begin with the matrix elernent

M= % (30 ate)) (atkya )
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Before: After: =

Y
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Jé__
=~

ot

Figure 5.5. In the nonrelativistic limit the total spin of the system is con-
.mmgma.u and thus the muons are produced with both sping up along the z-axis.

The electron and positron are still very relativistic, so this expression will be
simplest if we choose them to have definite helicity. Let the electron be right-
handed, moving in the +z-direction, and the positron be left-handed, moving
in the —z-direction. Then from Eq. (5.29) we have

o{p ) u(p) = —2E(0,1,3,0). (5.34)

in the other half of the matrix mmemuw we should use the nonrelativistic
expressions

s
%n_«al@éf,\mﬁmv a.wg
Keep in mind, in the discussion of this section, that the spinor & gives the
flipped spin of the antiparticle. Leaving the muon spinors £ and & undeter-
mined for now, we can easily compute

et ()
0 for p =0,
) T ~2metaie for u=1.

To evaluate M, we simply dot (5.34) into (5.36) and multiply by ¢2/¢? =
e?/4m?2. The result is

(k) o)

{5.36

.\’\RNMNM —ptu)= \Mmmw#. AM wu g, (5.37

Since there is no angular dependence in this expression, the muons are equally
likely to come out in any direction. More precisely, they are emitted in a1
s-wave; their orbital angular momentum is zero. Angular momentum conser
vation therefore requires that the total spin of the final state equal. 1, anc
indeed the matrix product gives zero unless both the muon and the antirdiiey
have spin up along the z-axis (see Fig. 5.5).
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To find the total rate for this process, we sum over muon sping to obtain
M? =4, which yields the cross seciion

do a? |k
an ﬁmmmh - _E. H* u B2 _Mw_A " Amwmv
<m

The same expression holds for a left-handed electron and a right-handed
positron. Thus the spin-averaged cross section is just 2 (1/4) times this ex-
pression, in agreement with (5.33).

Bound States

Until now we have considered the initial and final states of scattering processes
to be states of isolated single particles. Very close to threshold, however, the
Coulomb attraction of the muons should become an important effect. Just
below threshold, we can still form p+p~ pairs in electromagnetic bound states.

The treatment of bound states in quantum field theory is a rich and
complex subject, but one that lies mainly beyond the scope of this book.®
Tortunately, many of the familiar bound systems in Nature can be treated (at
least to a good first approximatior) as nonrelativistic systems, in which the
internal motions are slow. The process of creating the constituent particles out
of the vacuum is siill a relativistic effect, requiring guantum field theory for its
proper description. In this section we will develop a formalism for computing
the amplitudes for creation and annihilation of two-particle, nonrelativistic
bound states. We begin with a computation of the cross section for producing
st~ bound state in eTe™ annihilation,

Consider first the case where the spins of the electron and positron both
point up along the z-axis. From the preceding discussion we know that the
resulting muons both have spin up, so the only type of bound state we can
produce will have total spin 1, also pointing up. The amplitude for producing
free muons in this oowgmmﬁ.mbon is

A‘—:—al wmu._,“ k; ._.u = |meu mmwwu

independent of the momenta, (which we now call k; and k) of the muons.

Next we need to know how to write a hound state in terms of free-particle
states. For a general two-body system with equal constituent masses, the
center-of-mass and relative coordinates are

R = §(r +r3), =1y — 1T, {5.40)
Fhese have conjugate momenta
K=k + ks, k= WQS. - Hﬁmv ﬁmkwv

The total momentum K is zero in the center-of-mass frame, If we know the
force between the-partickes (for utp™, it is just the Coulomb force), we can

fReviews of this subject can be found in Bodwin, Yennie, and Gregorio, Rev.
Mod. Phys. 57, 723 {1985), and in Sapirstein and Yennie, in Kinoshita (1990).
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solve the nonrelativistic Schrdinger equation to find the Schridinger wave-
function, ¥(r). The bound. state is just a linear superposition of free states
of definite r or k, weighted by this wavefunction. For our purposes it is more
convenient to build this superposition in momentum space, using the Fourier
transform of ¢{r}:

09 = [Pseruey [l - (5.42)

If #(r) is normalized conventionally, ,mmﬁ@ gives the amplitude for finding a
particular value of k. An explicit expression for a bound state with mass
M = 2m, momentum K = (, and spin 1 oriented up is then

w
B) = VAN [l == kiok ). (549

The factors of (1/v/2m) convert our relativistically normalized free-particle
states so that their integral with (k) is a state of norm 1. (The factors
should involve +/2F 1y, but for a nonrelativistic bound state, |k| < m.) The
outside factor of v2A converts back to the relativistic normalization assumed
by our formula for cross sections. These normalization factors could easily be
modified to-describe a bound state with nonzerc total momentum K.

Given this expression for the bound state, we can immediately write down
the amplitude for its production:

&k -~ 1
— .B) * — -

M1 ,ﬁl\ 05070 = MU= T, =Kk 1). (540
Since the free-state amplitude from (5.39) is independent of the momenta of
the muons, the integral over k gives ¢*(0), the position-space wavefunction
evaluated at the origin. It is quite natural that the amplitude for creation of
a two-particle state from a pointlike virtual photon should be proportional to
the value of the wavefunction at zero separation. Assembling the pieces, we
find that the amplitude is simply

M(TT— B) = z\w (—2e2)ep*(0). {5.45)

In & moment we will compute the cross section from this amplitude. First,
however, let us generalize this discussion to treat bound states with more
general spin configurations. The analysis leading up to (5.37) will cast any S-
matrix elemnent for the production of nonrelativistic fermions é;r momenta
k and —k jnto the form of a spin matrix element :

iM(something — k, k') = ¢1[T'(k)] ¢, (5.46)

where I'(k) is some 2 x 2 matrix. We now must replace the spinors with 2 ners
malized spin wavefunction for the bound state. In the example just completed,
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we replaced

0 00
S 1 —
43 l?v? Sl? ov. (5.47)
More generally, a spin-1 state is obtained by the replacement
1
et - -——n*.o, : 5.48)
m.m V2 (

where n is a unit vector. Choosing n = (£ + 4§))/v/2 gives back (5.47), while
the choices n = (& — 1§)/v2 and n = Z give the other two spin-1 states
1} and (1] + 11)/v2. (The relative minus sign in (5.48) for this last case
comes from the rule (3.135) for the flipped spin.} Similarly, the spin-zero
state {1} — [1)/+/2 is given by the replacement

get — L 1, (5.49)

V2

involving the 2 x 2 unit matrix. With these rules, we can convert an S-matrix
element of the form (5.46) quite generally into an S-matrix element for pro-
duction of a bound state at rest: .

i M{something — B) = z\\ \ A%x “(k) qm <mq EEY (5.50)

where the trace is taken over 2-component spinor indices. For a spin-0 bound
state, replace n - o by the unit matrix. -

Vector Meson Production and Decay

Equation Am.mmu can be straightforwardly converied into a cross section for
production of u* ™ bound states in e™e™ annihilation. To make it easier to
extract all the physics in this equation, let us introduce polarization vectors
for the initial and final spin configurations: ey = (&+§)/+/2, from Eq. (5.29),
and n, from Eq. (5.48). Then (5.45) can be rewritten in a more invariant form
as

Mlegef — B) = z\w (—2¢%) (n* - e4) ¥*(0). (5.51)

The bound state spin polarization n is projected parallel to . Note that if
the electrons are initially unpolarized, the cross section for production of B
will involve the polarization average

1
72+ 2). (5.52)
Thus, the bound states produced will still be preferentially polarized along

the eTe™ collision axis.

1 * *
m:: e P e f) =
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Assuming an unpolarized electron beam, and summing (5.52) over the
three possible directions of n, we find the following expression for the total
cross section for production of the bound state:

11 1 BK

+ -
oleTe” — Lmv 22m2m f (2m)3 wm_HA

——(2m)* W (p+p’ S.lai L)

(553
Notice that the 1-body phase space integral can remove culy three of the
four delta functions. It is conventional to rewrite the last delta function using
§(P° — KO = 2K95(? — K*?). Then
2
Q‘mm+ml — mv — m%ﬁ.m w_\_\gﬁ : ﬁ _ Emu AU.MA
The last delta function enforces the constraint that fiie total center-of-mas:
energy must equal the bound-state mass; thus, the bound state is producec
as a resonance in e"e” annihilation. If the bound state has a finite lifetime
this delta function will be broadened into a resonance peak. In practice, ths
intrinsic spread of the e*e™ beam energy is often a more important broad:
ening mechanism. In either case, {5.54) correctly predicts the area under the
resonance peak.
If the bound state B can be produced from ete™, it can also annihilat:
back to eTe™, or to any other sufficiently light lepton pair. According to (4.86)
the total width for this decay mode is given by

DB — etem) = % \ dti, |MP2, (5.55

where M is just the complex conjugate of the matrix element (5.51) we usec
to compute B production. Thus

NE\ ! %&3 WO (In - ef” + [n - €*[%). (556

Now we must sum over electron polarization states and average over the thre
possible values of n. We thus obtain

L6wa? [1y(0)*
3 M2

The formula for the decay width of B is very similar to that for the productio:
cross section, and this is no surprise: Both calculations invelve the square ¢
the same matrix elernent, summed over initial and final polarizations. The tw
calculations differed only in how we formed the polarization averages, and i
the phase-space factors. By this logic, the relation we have found between th
two guantities,

T(B—ete )= (5.57

(B —eter)

olete” — B) =4nm -S(BZ, ~ M™),
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is very general and completely independent of the details of the matrix element
computation. The factor 3 in (5.58) came from the orientation average for n;
for a spin-J bound state, this factor would be (2J + 1).

The most famous application of this formalism is to bound states not of
muons but of quarks: quarkonium. We saw the experimental evidence for ¢g
bound states (the J/1 and T, for example) in Fig. 5.2. (The resonance peaks
are much too high and too narrow to show in the figure, but their sizes have
been carefully measured.) Equations (5.54) and (5.57) must be multiplied
by a color factor of 3 to give the production cross section and decay width
for a spin-1 ¢ bound state. The value 9(0) of the g7 wavefunction at the
origin cannot be computed from first principles, but can be estimated. from
a nonrelativistic model of the g spectrum with a phenomenologically chosen
potential. Alternatively, we can use the formula

2
I(Blgg) —ete™) = E\:Qw@m% (5.59)
to measure (0} for a g bound state. For example, the 18 spin-1 state of g3,
the ¢ meson, has an ete™ partial width of 1.4 keV and a mass of 1.02 GeV.
From this we can infer |1(0)|? = (1.2fm) 3. This result is physically reason-
able, since hadronic dimensions are typicaily ~1 fm.

Qur viewpoint in this section has been quite different from that of earlier
sections: Tnstead of computing everything from first principles, we have pieced
together an approximate formula using a bit of gquantum field theory and a bit
of nonrelativistic quantum mechanics. In principle, however, we could treat
bound states entirely in the relativistic formalism. Consider the annihilation
of an eTe~ pair to form a gt~ bound state, which subsequently decays back
into ete—. In our present formalism we might represent this process by the
diagram

e et

e et
The net process is simply e*e™ — eTe™ (Bhabha scattering). What would
happen if we tried to compute the Bhabha scattering cross section directly in

QED perturbation theory? Obviously there is no ptu~ contribution in the
tree-level diagrams:
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As we go to higher orders in the perturbation series, however, we find (among
others) the following set of diagrams:

At most values of Egp, these diagrams give only a small correction to the
tree-level expression. But when E.. is near the gTu~ threshold, the dia-
grams involving the exchange of photons within the muon loop contain the
Coulomb interaction between the muons, and therefore become quite large.
One must sum over all such diagrams, and it can be shown that this sum-
mation is equivalent to solving the nonrelativistic Schrédinger equation.* The
final prediction is that the cross section contains a resonance peak, whose area
is given by (5.54) and whose width is given by (5.57).

5.4 Crossing Symmetry
Electron-Muon Scattering

Now that we have completed our discussion of the process ete™ —» utp~,
let us consider a different but closely related QED process: electron-muon
scattering, or e~ — e p~. The lowest-order Feynman diagram is just the
previous one turned on its side:

.mm
N wlm Tph) v ulpy) Bph) vau(pe)-

The relation between the processes eve™ — ptp™ and e”p~ — mltl, be-
comes clear when we compute the squared amplitude, averaged and summed
over spins: .

1 4
: WWE_N = 1 002 mar s m) | ] a4

_HEmwm@Soﬁ%ﬁﬁmmEmWonHmmc:Am.&moum.,.mlIvt+t|.g..€;r¢:
replacements .

p—p, P—o-p, k—op, K -p

*This analysis is carried out in Berestetskii, Lifshitz, and Pitaevskil (1982).
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So instead of evaluating the traces from scratch, we can just make the same
replacements in our previous result, Eq. (5.10). Setting m. =0, we find

H m:.m\F 5
NM_\EMHMM?H.@& p.E:@H.EV‘H.ﬁsaﬁw@%&.a.m:
spins .

To evaluate this expression, we must work out the kinematics, which will
be completely different. Working in the center-of-mass frame, we make the
following assignments:

;o
. "= Qﬁwu e~
b= b2 ! 8= 4
g — ..W\L‘..m.l - _RI ~ .
F N R k-2=kcosf
pe = {E, —k%)

B E+k=Em
143 @m“ﬁmﬂlwv -

The combinations we need are
prope=py-ph=k(E+ k) p1-po=p1pp = k(E +kcosf);
p-ph = k(1 — cos 9); ¢ = —2p,-p) = ~2k*(1 — cos#).

Qur expression for the squared matrix element now becomes

1 2 _ 2¢* 2 2 2 2
1 mmm_\ﬁ_ = (i — o 0)? Qm + E)? + (B + keosd)® —mi, (1 - no.mmv u
. (5.62)
T'o find the cross section from this expression, we use Fq. {4.84), which in

the case where one particle is massless takes the simple form

Aalq = = | MP? 5.63
dQ oy B4n2(E + k)2 (5.63)
Thus we have our result for unpolarized electron-muon scattering in the

center-of-mass frame:

der o?

an - mamﬁm+3mﬁl cos &)

- Qm B2+ (B + keos8)? —m2(1 — cos6)?),

(5.64)
where k =+ E? — ,Sw. Tn the high-energy limit where we can set my, = 0, the
differential cross section becomes :
2

do o 9 )
0~ 3FL(1 ~ cos 0 TT_.G.TOOmS v (5.85)
Note the singular behavior
do 1
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of formulae (5.64) and (5.65). This singularity is the same asin the Rutherford
formula (Problem 4.4). Such behavior is always present in Coulomb scattering;
it arises from the nearly on-ghell (that is, g? =2 0) vircual photon.

Crossing Symmetry

The trick we made use of here, namely the relation between the two processes
ete” — pTu~ and e p” — e p, is our first example of a type of relation
known ag crossing symmetry. In general, the S-magrix for any process involv-
ing a particle with momentum p in the initial state is equal to the S-mairix for

an otherwise identical process but with an antiparticle of momentum k = —p
in the final state. That is,
.\Sﬁ%@v.ﬁ.lvﬂiﬁl.fmv@d, {5.67)

where ¢ is the antiparticle of ¢ and k = —p. (Note that there is no value of p for
which p and k are both physically allowed, since the partigle must have P >0
and the antiparticle must have &0 > 0. So technically, we should say that either
amplitude can be obtained from the other by analytic continuation.)

Relation (5.67) follows directly from the Feynman rules. The diagrams
that contribute to the two amplitudes fall into a natural one-to-one correspan-
dence, where corresponding diagrams differ only by changing the incoming ¢
into the outgoing &. A typical pair of diagrams looks like this:

In the first diagram, the momenta g; coming into the vertex from the rest of
the diagram must add up to —p, while in the second diagram they must add
up to k. Thus the two diagrams are equal, except for any possible difference In
the external leg factors, if p = —k. If ¢ is a spin-zero bosor, there is no external
leg factor, so the identity is proved. If ¢ is a fermion, the analysis becomes
more subtle, since the relation depends on the relative phase convention for
the external spinors uw and v. If we simply replace p by —k in the fermion
polarization sum, we find

S u(pya(p) = ¢+ m=—(¥ - m) = = 3 w(k)o(k). (5.68)

The minus sign can be compensated by changing our phase convention for
v(k). In practice, it is easiest to cancel by hand one minus sign for each
crossed fermion. With appropriate conventions for the spinors w({p) dnd v(k),
it is possible to prove the identity {5.67) without spin-averaging.
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Mandelstam Variables

It is often useful to express scattering amplitudes in terms of variables that
make it easy to apply crossing relations. For 2-body — 2-body processes, this
can be done as follows. Label the four external momenta as

We now define three new quantities, the Mandelstom variables:
s=(p+p)* = (k+£)%
t=(k—p)® = (K -9 (5.69)
u= (¥ —p)*= (k-

The definitions of t and = appear to be interchangeable (by renaming k.— &');
it is conventional to define ¢ as the squared difference of the initial and final
momenta of the most similar particles. For any process, s is the square of the
total initial 4-momentum. Note that if we had defined all four momeunta to be
ingoing, all signs in these definitions would be +.

To illusirate the use of the Mandelstam variables, let us first consider
the squared amplitude for ete™ — ptu™, working in the masslegs limit for
simplicity. In this limit we have t = —2p-k = —2p’ - &' and = _9p.k =
—9p - k, while of course s = (p+ 7')2 = ¢*. Referring to our previous result
{5.10), we find :

i Zpe=SE G 6o

- +
e e

To convert to the process e p~ — e~ u~, we turn the diagram on its side
and make use of the crossing relations, which become guite simple in terms
of Mandelstam variables. For example, the crossing relations tell us to change
the sign of p’, the positron momentum, and reinterpret it as the momenium
of the outgoing electron. Therefore s = {(p + p')* becomes what we would
now call ¢, the difference of the outgoing and incoming electron momenta.
Similarly, ¢ becomes s, while u remains unchanged. Thus for e~p~ —e™p,
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we can immediately write down

e” . &

e we= S () e

3 . 54
You can easily check that this agrees with (5.61) in the massless limit. Note
that while (5.70) and (5.71) look quite similar, they are physically very dif-
ferent: The denominator of the first is just s? = E%,, but that of the second
involves ¢, which depends on angles and goes to zero as # — 0.

When a 2-body — 2-body diagram contains only one virtual particle, it
is conventional to describe that particle as being in a ceriain “channel”. The
chanmel can be read from the form of the Feynman diagiam, and each channel
leads to a characteristic angular dependence of the cross section:

~7

s-channel: ﬁ_ Mo ——

B

t-channel: k - M o \:W:|w

- : P ﬂ . t— Sﬁ
1

u~channel: M x 3

S u—Tmy

In many cases, a single process will receive contributions from more thar
one channel; these must be added coherently. For example, the amplitude for
Bhabha scattering, ete™ — ete, is the sum of s- and t-channel diagrams
Maller scattering, e"e~ — e~ e~ involves - and w-channel diagrams.

To get a better feel for s, ¢, and u, let us evaluate them expliciily in the
center-of-mass frame for particles all of mass m. The kinematics is as usual:

k=(E,p)

y /m ,

ww\ = A.m\_, .I.BMV

W

£
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Thus the Mandelstam variables are
s=(p+p)" = (2E)* = ELy;
t = (k—p)? = —p°sin® 0 — p*(cos 6 — 1) = —2p”(1 — cos); (5.72)
we (B —p)? = —p?sin® 8 — p?(cos 6 + 1)% = —2p° (1 + cos0).

" Thus we see that ¢ — 0 as § — 0, while w — 0 as ¢ — 7. {When the masses
are not all equal, the limiting values of ¢ and « will shifi slightly.)
Note from {5.72) that when all four particles have mass m, the sum of
the Mandelstam variables is s +t + v = 4F% — 4p? = 4m?, This is a special
case of a more general relation, which is often quite useful:

4
s+ttu=y ml, (5.73)
i=1

where the sum runs over the four external particles. This identity is easy
to prove by adding up the terms on the right-hand side of Egs. (5.69), and
applying momentum conservation in the form (p+p' — k — K/)* = 0.

5.5 Compton Scattering

We now move on to consider a somewhat different QED process: Compton
scattering, or e vy — e~ . We will calculate the unpolarized cross section
for this reaction, to lowest order in «. The calculation will employ all the
machinery we have developed so far, including the Mandelstam variables of
the previous section. We will also develop some new technology for dealing
with external photons.

This is our first example of a calculation involving two diagrams:

Ak

As usual, the Feynman rules tell us exactly how to write down an expression
for M. Note that since the fermion portions of the two diagrams are identical,
there is no relative minus sign between the two terms. Using ¢, (k) and ¢},(k')
to denote the polarization vectors of the initial and final photons, we have

M = ) (e ) () T i) ()
= +m)

+ ﬂAﬁJAlg“vavthnv 3 mlmm\xtum“ ﬁwavggv
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el S ) ) PO
GrRE—m? | (p-kP—m? "
We can make a few simplifications before squaring this expression. Since
=m? and k? = 0, the denominators of the propagators are

= —ielcs(K)e, (k) B(e) +

p?
(pekP-m?=2k and (p—K)P-m*=-2pk.
To simplify the numerators, we use a bit of Dirac algebra:
(F+m)y“u(p) = (2p" — v"¥+ ¥'m)ulp)
= 2p"u{p) — v’ (¢ — m}u(p)
= 2p”u(p).

Using this trick on the numerator of each propagator, weobtain

. a2 ks —r Qtw\\wcxﬁrm\ﬂtﬁc FQE%;Q.:.TMQQB‘;
iM = —ie“e, (k vmv?vﬁmﬁ; ok - “opk u(p). (6.74)

Photon Polarization Sums

The next step in the calculation will be o square this expression for A
and sum {or average) over electron and photon polarization states. The sum
over electron polarizations can be performed as before, using the identity
Yu{p)i(p) = ¢+ m. Fortunately, there is a similar trick for summing over
photen polarization vectors. The correct prescription is to make the replace-
ment

MU ey~ ~Gu . (5.75)

polarizations

The arrow indicates that this is not an actual equality. Nevertheless, the re-
placement is valid as long as both sides are dotted into the rest of the expres-
sion for a QED amplitude M.

To derive this formula, let us consider an arbitrary QED process involving
an external photon with momentum k:

— iM{E) = iMF(R)es (k). (5.76)

Since the amplitude always contains mmﬁ&n, we have extracted this factor and
defined M*{k) to be the rest of the amplitude M. The cross section will be
proportional to

Sl MmAm)]® = 3 e, MHEM (k). s,

[
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For simplicity, we orient % in the 3-direction: k# = (k, 0,0, k). Then the two
transverse polarization vectors, over which we are summing, can be chosen to
be

m.w... = AD,H_D,DVM mW” AO_O““_._OV. .
With these conventions, we have
" 2
S lenBMmER)[F = M)+ |MER)[ (5.77)

€

Now recall from Chapter 4 that external photons are ‘created by the in-
teraction term [d*rej#A,, where j¥ = yv*1 is the Dirac vectar current.
Therefore we expect AM*(k) to be given by a matrix element of the Heisen-

berg field j#: .
ME(E) = \ B ™ (F R @) |6 (5.78)

where the initial and final states include all particles except the photon in
question.

From the classical equations of motion, we know that the current j* is
conserved: 8,5#(z) = 0. Provided that this property still holds in the quantum
theory, we can dot &, into (5.78) to obtain

kME(R) = 0. _ (579)

The amplitude M vanishes when the polarization vectof e,(k) is. replaced
by k. This famous relation is known as the Ward identity. Ii is essentially
a statement of current conservation, which is a consequence of the gauge
symmetry (4.6) of QED. We will give a formal proof of the Ward identity in
Section 7.4, and discuss a number of subtle points skimmed over in this quick
“derivation”.

It is useful to check explicitly that the Compton amplitude given in (5.74)
obeys the Ward identity. To do this, replace €, (k) by k. or €} (k") by k,, and
manipulate the Dirac matrix products. In either case (after a bit of algebra)
the terms from the two diagrams cancel each other to give zero.

Returning to our derivation of the polarization sum formula {5.75), we

. note that for §* = (k,0,0, %), the Ward identity takes the form

EMO (k) — kM3 (k) = 0. (5.80)
Thus M® = M3, and we have
3 e ME(R)MY* (k) = |ML2 + | A2

f

_.>\hu_m 4 _.>\Hm_m + _‘?\_w_w _ _Ec_m
= —Guw \,\Htﬁwv.\;\mtiﬁw@

That is, we may sum over external photon polarizations by replacing 3 €},
with —g,..
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Note that this proves (pending our general proof of the Ward identity)
that the unphysical timelike and longitudinal photons can be consistently
omitted from QED calculations, since in any event the squared amplitudes
for producing these states cancel to give zero total probability. The negative
norm of the timelike photon state, a property that troubled us in the discussion
after Eq. (4.132), plays an essential role in this cancellation.

The Klein-Nishina Formula

The rest of the computation of the Compton scattering cross section is
straightforward, although it helps to be somewhat organized. We want to
average the squared amplitude over the initial electron and photon polariza-
tions, and sum over the final electron and photon polarizations. Starting with

expression (5.74) for M, we find e
L a_ ¢ b [P 2
ow M= @Em&.:?x +S; Wk ik %
VP27 AP ENT—29pP
(p+m) ﬁ 2p-k t 2p-k! M
_#f 1 m . m I (5.51)
T4k 2pR)(2pK)  QpE)(20E)  (2pR)?] T

where 1, IT, I1I, and IV are complicated traces. Note that IV is the same
as I if we replace k with —k&'. Also, since we can reverse the order of the «
matrices inside a trace (Eq. (5.7)), we see that II = ITI. Thus we must work
only to compute I and IL.

The first of the traces is

1= e[ + m) (P + 2P0") (- m) (e Mor + 2730,

There are 16 terms inside the trace, but half contain an odd number of ~
matrices and therefore vanish. We must now evaluate the other eight terms,
one at a time. For example,

tr [y By pr B] =t (=20 ) B (200 1)
— 4 H2pk — )
=8p-k tr[p' ]
=32(p-k)(p'- k).

By similar use of the contraction identities (5.8) and (5.9), and other Dirac
algebra such as g = p° = m?, each term in T can be reduced to atrace of nc
more than two v matrices. When the smoke clears, we find

I=16(dm? — 2mPp-p' +dmPp-k — 2mPp -k + 2(p-K)(p'-K)). (582
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Although it is not obvious, this expression can be simplified further. To
see how, introduce the Mandelstam variables:

s=(p+k)? =2 k+m? =2k +m?
t=(@ —p)®=~2pp +2m® = -2k-F; (5.83)
uv=(k'—p)? = 2" p+m? = —2k-p' + m%

Recall from (5.73) that momentum conservation implies s+£-+u = 2m?2. Writ-

ing everything in terms of s, £, and u, and using this identity, we eventually
obtain

L=16(2m" + m*(u—m?) - }(s ~ m*)(u — m?)). (5.84)
Sending k — —&', we can immediately write
IV = 16(2m* + m*(s - m®) — (s — m?)(u — m?)). (5.85)

Evaluating the traces in the numerators TT and III requires about the same
amount of work as we have just done. The answer is

11 =III = —8(4m? + m?(s - m*) + m*(u — m?)). (5.86)

Putting together the pieces of the squared matrix element (5.81), and rewriting
s and v in terms of p- k and p - ¥/, we finally obtain

M wiiﬂ\.\n HH pH.HN_
-M”um m |||..
ﬁaa_i m T,.ﬂ+3n,+ 3 @in i\vi; Fin EL amd

To turn this expression into a cross section we must decide en a frame of
reference and draw a picture of the kinematics. Compton scattering is most
often analyzed in the “lab” frame, in which the electron is initially at rest:

E = (w,w'5ind, 0,0 cos 8)

/m

Before: . After:

e

“hRE

k= (w,w2) p=(m,0)

' ={£p)
We will express the cross section in terms of w and 8. We can find o', the
energy of the final photon, using the following trick:

m?= (@) =(p+k—KY=p"+2% (k—k) 2%k

=m® + 2m{w — ') — 2w’ (1 — cos8),

1 1 1
- m - Iﬁn__,.ﬁH — CO8 Qv Ammmu
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"The last line is Compton’s formula for the shift in the photon wavelength. For

our purposes, however, it is more useful to solve for w’:
w

W= (5.89)
1+ Wﬁ —cost)
m

The Eﬁmm,mvmnm integral in this frame is
&Br 1 &y
= 226Dk +p — & —
\ a2 \ @) % (2m)7 s (oSO 45—k
AEJNRE\ a1
T (20 w'E
® 2w (w4 /' mP4w? (w2 —2ww' cosd — w —m)
_ ,\ deosl o' 1 -
- 2r  4F’ w' —wcosf
e

g__

1
wﬁ\a nOmm3+EG|8m3

AV
- % \g cosf Ausw . | (5.90)

il

Plugging everything into our general cross-section formuia (4.79) and setiing
w4 —vp| =1, we find ,
do 11 1()? 1 .
—— e — e [ MI“).
dcosd 2w2m & wm Aa M_ M v
spins
To evaluate {M2, we replace p- k = mw and p - k' = mw' in (5.87). The
shortest way to write the final result is
do mo? rw' 2w w
LG _TOWANRIW W Gn?e 5.91
dcos  m? AEV _MEITE_. St M_q : (5.91)
where ' /w is given by (5.89). This is the (spin-averaged) Klein-Nishino for-
maula, first derived in 1929.7

In the limit w — 0 we see from (5.89) that w'/w — 1, so the cross section
becomes .
do 7ol o Sma?
dcosh ﬂ:ﬂlﬁ +cos"6); Ttotal = %
This is the familiar Thomson cross section for scattering of classical electro-

magnetic radiation by a free electron. . §

(5.92)

e,
ST

10, Klein and Y. Nishina, % Physik, 52, 853 (1929).
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High-Energy Behavior

To analyze the high-energy behavior of the Compton scattering cross section,
it is easiest to work in the center-of-masgs frame. We can easily construct the
differential cross section in this frame from the invariant expression G 87).
The kinematics of the reaction now looks like this:

k' = {w,wsind,0,wcosd)

k= (wwz) N /m prhk=w(B+w)
N AVAVLWAN S ww“.,,m e p K =w(E +wcosh)
p=(F,-wi)
E? =u® +m?
ﬁ\

Plugging these values into (5.87), we see that for 8 = =, the term p-k/p-&'
becomes very large, while the other terms are all of O(1) or smaller. Thus for
m_vvq;mcamﬂﬁ we have

p-k E4w
M ” 2 . =9t 17
4 T»\: pk 2 E+wcosf’ (5.93)

spins

The cross section in the CM frame is given by (4.84):

do 1 1 1w %(Etw)
dcosf ~ 2 wm_m wEw (2mE + w) " E+weosd (5.94)
TO

~omEy s{1+cosd)’

Notice that, since s » m?, the denominator of (5.92) almost vanishes
when the photon is emitted in the backward direction (# = #). In fact, the
electron mass m could be neglected completely in this formula if it were not
necessary to cut off this singularity. To integrate over cos#, we can drop the
electron mass term if we supply an equivalent cutoff near § = . In this way,
we can approximate the total Compton scattering cross section by

1 1
do e’ 1 .
d 8)— =~ e ;
\; (cos#) Toosh p \ d(cos ) T oost) (5.95)
-1 —1+2mi/s

Thus, we find that the total cross section behaves at high energy as

m\_ju_u m
Q.wo_..m—” 3 ﬂom Aﬂv . Am.wmu
The main dependence o?/s follows from dimensional analysis. But the singu-
larity associated with backward scattering of photons leads to an enhancement
by an extra logarithm of the energy.
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Let us try to understand the physics of this singularity. The singular term
comes from the square of the w-channel diagram,

ﬁ‘ﬂl._\\wn_.

pﬁ\w._.q;

= —je? mtﬁ\nvmumw\vm@,vQ (p— .m&w

7 u(p).  (5.97)

The amplitude is large at @ = m because the denoininator of the propagator
is then small (~m?) compared to s. To be more precise, define x =7 —46. We
will be interested in values of y that are somewhat larger than m/w, but still
small encugh that we can approximate 1 — cos x = 2/ m m.ow. x in this range,
the denominagor is

@\a\vmlqamHlm@.wsleEw m% +HI oOva R!ﬁ€wxm+3wu.ﬁm.wmu
This is small compared to s over a wide range of values for x, hence the
enhancement in the total cross section.

Looking back at (5.93), we see that for x suck that m/jw < x < 1, the
squared amplitude is proportional to 1/x*, and hence we expect M o 1/x.
But we have just seen that the denominator of M is proportional to x?, so
there must bea compensating factor of ) in the numerator. We can understand
the physical origin of that factor by looking at the amplitude for a particular
set of electron and mboﬂoﬁ polarizations.

Suppose that the initial electron is right-handed. The dominant term of
{5.97) comes from the term that involves (¥ — ¥') in the nwmerator of the
propagator. Since this term conéains three y-matrices in (5.97) between the
i and the wu, the final electron must also be right-handed. The amplitude is
therefore

iM = I&mwmtﬁwvmw?q:wﬂ?,uq iqcﬁmgy {5.99)
where
ug(p)= »\@mwv and up(p’) = a\m'@ﬁwv (5.100)

If the initial photon is left-handed, with e, (k) = (1/v/2)(0,1, —%,0), then

eulk) = Cw mv | _,_,

1

and the combination u},(p")o#€, (k) vanishes. The initial photon musi there-
fore be right-handed. Similarly, the amplitude vanishes unless the final ﬂwoﬁoa :
is right-handed. The kinematic situation for this set of polarizations is shown
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Before:
/\/\/\/@)\/\Y -«
After:
- 1\/)\/) .
X )A)\/
e

Figure 5.8. In the high-energy limit, the final photon is most likely to be
emitted at backward angles. Since helicity is conserved, a unit of spin angular
momentum is converted to orbital angular momentum.

in Fig. 5.6. Note that the total spin angular momentum of the final state is
one unit less than that of the initial state. .

Continuing with our calculation, let us consider the. numerator of the
propagator in (5.99). For x in the range of interest, the dominant term is

oo — k) = ot - wy. ;

This is the factor of y anticipated above. It indicates that the final state is
a p-wave, as required by angular momentum conservaton. Assembling all the
pieces, we obtain

- — w 4e?
\Sﬁmmém - mmnﬁwv ~ QMQ/\M%%& ~ Xu|+..3|vmm\cﬂ
(5.101}
We would find the same result in the case where all initial and final particles
are left-handed. .

Notice that for directly backward scattering, x = 0, the matrix element
{5,101} vanishes due to the angular momentum zero in the numerator. Thus,
at angles very close to backward, we should also take into account the mass
term in the numerator of the propagator in (5.97). This term contains only two
gamma matrices and so converts a right-handed electron into a left-handed
electron. By an analysis similar to the one that led to Eq. {5.101), we can
see that this amplitude is nonvanishing only when the initial photon is left-
handed and the final photon is right-handed. Following this analysis in more
detail, we find

de?*m/w
2+ mEjut

Mlegre — eLvr) = (5.102)
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The reaction with all four helicities reversed gives the same matrix element.

To compare this result to our previous calculations, we should add the
contributions to the cross section from (5.101) and {5.102) and egual con-
tributions for the reactions involving initial left-handed electrons, and divide
by 4 to average over initial spins. The unpolarized differential cross section
should then be

do, 1 1.1 w Bely? N ,mm.psaM\Em
deosf 22F 2w 2m)4(E +w) [ (6 + m2/w?)? (%2 + m?/w?)?
dwa?

T s(x? + 4m?/s)’ (5.103)
which agrees precisely with Eq. (5.94).

The importance of the helicity-flip process (5.102) just at the kinematic
endpoint has an interesting experimental consequence. Congider the process
of inverse Compton scattering, a high-energy electron beam colliding with
a low-energy photon beam (for example, a laser beam) to produce a high-
energy photon beam. Let the electrons have energy £ and the laser photons
have energy w, let the energy of the scattered photon be E' = yF, and
assume for simplicity that s = 48w > m?. Then the computation we have
just done applies to this situation, with the highest energy photons resulting
from scattering that is precisely backward in the center-of-mass frame. By

‘computing 2k- k' in the center-of-mass frame and in the lab frame, it is easy

to show that the final photon energy is related to the center-of-mass scattering

angle through . L,
~ (1 — .
YR m? cosfy 1 i

Then Eq. (5.103) can be rewritten as a formula for the energy distribution of
backscattered photons near the endpoint:

2 2
do 2o 16m _. (5.104)

Iy " S g) 1 16m3/s)? -0+ =

where the first term in brackets corresponds to the helicity-conserving pro-
cess and the second term to the helicity-flip process. Thus, for example, if
a right-handed polarized laser beam is scattered from an unpolarized high-
energy electron beam, most of the backscattered photons will be right-handed
but the highest-energy photons will be left-handed. This effect can be used
experimentally to measure the polarization of an electron beam or to create
high-energy photon sources with adjustable energy distribution and polariza-
tion.

W
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Pair Annihilation into Photons.

We can still obtain one more result from the Compton-scattering amplitude.
Consider the annihilation process

ete” — 2,

given to lowest order by the diagrams

kX P ks

m K p2 21

“

This process is related to Compton scattering by crossing symmetry; we can
obtain the correct amplitude from the Compton amplitude by making the
replacements

p—=p P o-pp ko—k Kok
gmiﬂm these substitutions E,Am.md.u we find

-k D1 _WH 1 1
= \smt&%? 2 + 2m? +
M M 3.5 p1-ke FS;& F.wuv

m—uEm

(5.105)

1 1 N2
4
—m + .
Awu“_. . WH " .mnw v H—
The overall minus sign is the result of the crossing relation (5.68) and should

be removed.
Now specialize to the center-of-mass frame. The kinematics is

k1 = (E,Esin$,0, Ecosf)

R é

p1 = (B, p /

m1|v!ﬁ ) .\ww__w - et
p2 = (B, -pZ)

ke = (E,—FEsinf,0, —E cos 6}

A routine calculation yields the differential cross section,

de  2ma® Amv ﬁﬁw + p? cos? B + 9m? 2t :
d cosfl s \p/|m24p?sin?f  m2 +p?sin®f  (m? + p?sin® )2
(5.106})
In the high-energy limit, this becomes
do Qe 1+ cos? @
d cos ;@:.:Vm.:w; 8 ﬁ sin? v, (5.107)
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Figure 5.7. Angular dependence of the cross section for ete™ — 27 at
B = 29 GeV, as measured by the HRS collaboration, M. Derrick, et. al.,
Phys. Rev. D34, 3286 (1986). The solid line is the lowesi-order theoretical
prediction, Eq. {5.107).

except when sin § is of order m/p or smaller. Note that since the two photons
are identical, we count all possible final states by integrating only over 0 <
<7/2 ,EEm the total cross section is computed as

1

. : do
g Ttotal = \%n@m ) Fpeev (5.108)
o

Figure 5.7 compares the asymptotic formula (5.107) for the differential

_ cross section to measurements of eTe~ annihilation into two photons at very

high energy.

Problems

5.1 Coulomb scattering. Repeat the computation of Problem 4.4, par{ (¢}, this
time using the full relativistic expression for gm matrix element. You should find, for
the spin-averaged cross section,

dor o? o . af
U [y [
46l @_w_m%a%a\w% A" sin L

where p is the electron’s 3-momentum and 3 is its velocity. This is the Mott ?3@23 fer,
Coulomb scattering of relativistic electrons. Now derive it in a second way, by working



