For which of these wavepackets will DX increase the fastest?

- D) Both A and B
- E) Both A and C

For which of these wavepackets will DX increase the fastest?

: fastest spread.

A beam of electrons is sent through a narrow hole in a piece of foil, and the places where these electrons hit a distant screen are recorded. If we make the hole in the screen smaller, the region where the electrons are hitting the screen will

- A) become smaller.
- B) become larger.
- C) stay the same.

A beam of electrons is sent through

A beam of electrons is sent through a narrow hole in a piece of foil, and the places where these electrons hit a distant screen are recorded. If we make the hole in the screen smaller, the region where the electrons are hitting the screen will

- A) become smaller.
- B) become larger.
- C) stay the same.

smaller hole:

Sha less uncertainty in

y position

more meetain y
momentum/velocity
i. pattern spreads out

The speed of a wavepacket describing a traveling electron should be

- A) proportional to λ
- B) inversely proportional to λ
- C) proportional to Δx
- D) inversely proportional to Δx
- E) the same regardless of λ or Δx

The speed of a wavepacket describing a traveling electron should be $V = \frac{P}{m} = \frac{h}{m\lambda}$

- A) proportional to λ
- B) inversely proportional to λ
 - C) proportional to Δx
 - D) inversely proportional to Δx
 - E) the same regardless of λ or Δx

In the simulation, the individual ripples in the wavepacket travel

- A) faster than the wavepacket itself
- B) at the same rate as the wavepacket
- C) slower than the wavepacket

In the simulation, the individual ripples in the wavepacket travel

- A) faster than the wavepacket itself
- B) at the same rate as the wavepacket
- C) slower than the wavepacket