Office hours today:

$$
\text { 2:30pm-4:30pm Hern } 420
$$

Midterm Q\&A
Tuesday: 5pm-7pn Henn 202

MECHANICAL EQUILIBRIUM: occurs when forces (and torques)
 on each part of the system add to zero example: $\vec{F}_{\text {gas }}+\vec{F}_{\text {gravity }}+\vec{F}_{\text {air }}=0$

- piston is in equilibrium

What happens to the forces if we move the piston downward a little (assume the cylinder is insulated)?

A) $\left|F_{\text {gas }}\right|$ increases a little while the other forces remain the same.
B) $\left|F_{\text {gas }}\right|$ increases a little and $\left|F_{\text {air }}\right|$ increases to compensate.
C) $\left|F_{\text {gas }}\right|$ decreases a little and the other forces remain the same.
D) $\left|F_{\text {gas }}\right|$ decreases a little and $\left|F_{\text {air }}\right|$ decreases to compensate.
E) Nothing: all forces remain the same.

What happens to the forces if we move the piston downward a little (assume the cylinder is insulated)?

Adiabatic comprosion:

$$
P V^{y}=\text { ans }
$$

$V \downarrow$ so $P \uparrow$
so Fair \uparrow
A) $\left|F_{\text {gas }}\right|$ increases a little while the other forces remain the same.
B) $\left|F_{\text {gas }}\right|$ increases a little and $\left|F_{\text {air }}\right|$ increases to compensate.
C) $\left|F_{\text {gas }}\right|$ decreases a little and the other forces remain the same.
D) $\left|F_{\text {gas }}\right|$ decreases a little and $\left|F_{\text {air }}\right|$ decreases to compensate.
E) Nothing: all forces remain the same.
gravity 6 outside air pressure remain constant

What happens to the forces if we move the piston upward a little (assume the cylinder is insulated)?

A) $\mid F_{\text {gas }}$ lincreases a little while the other forces remain the same.
B) $\left|F_{\text {gas }}\right|$ increases a little and $\left|F_{\text {air }}\right|$ increases to compensate.
C) $\left|F_{\text {gas }}\right|$ decreases a little and the other forces remain the same.
D) $\left|F_{\text {gas }}\right|$ decreases a little and $\left|F_{\text {air }}\right|$ decreases to compensate.
E) Nothing: all forces remain the same.

What happens to the forces if we move the piston upward a little (assume the cylinder is insulated)?

Adiabatic expansion $P \downarrow$ so $\left|F_{\text {gas }}\right| \downarrow$
A) $\mid F_{\text {gas }}$ |increases a little while the other forces remain the same.
B) $\left|F_{\text {gas }}\right|$ increases a little and $\left|F_{\text {air }}\right|$ increases to compensate.
C) $\left|F_{\text {gas }}\right|$ decreases a little and the other forces remain the same.
D) $\left|F_{\text {gas }}\right|$ decreases a little and $\left|F_{\text {air }}\right|$ decreases to compensate.
E) Nothing: all forces remain the same.

Restoring Forces: For a stable equilibrium configuration, a displacement in one direction leads to a net force in the other direction.
egg.

Mun留

equilibrium

This leads to OSCILLATIONS = periodic motion

Demo: weight on a spring

Exercise: for an object in a stable equilibrium configuration, draw some possible graphs of the net force on this object as a function of the displacement x : (careful: we're not looking for F vs t here)

EXTRA: what does your graph look like if you zoom in to the region of small Δx. Can you write down an equation that describes F vs Δx in this region?
example:

Hooke's LAW: Applies to almost any system perturbed a small amount from stable equilibrium

$$
F=-k x
$$

exact for "ideal spring"

Oscillations with Hooke's Law:

Solution is $x(t)=A \cos (\omega t+\phi)$ with $\omega=\sqrt{\frac{k}{m}}$

Simple Harmonic Motion

A plot of displacement (in cm) as a function of time (in s) is shown above. What are the period and amplitude of this simple harmonic motion?
A) $T=1 \mathrm{~s}, A=2 \mathrm{~cm}$
B) $T=2 \mathrm{~s}, A=2 \mathrm{~cm}$
C) $\mathrm{T}=4 \mathrm{~s}, \mathrm{~A}=2 \mathrm{~cm}$
D) $T=2 \mathrm{~s}, \mathrm{~A}=1 \mathrm{~cm}$
E) $T=4 \mathrm{~s}, \mathrm{~A}=1 \mathrm{~cm}$

EXTRA: what is w?

A plot of displacement (in cm) as a function of time (in s) is shown above. What are the period and amplitude of this simple harmonic motion?
A) $T=1 \mathrm{~s}, A=2 \mathrm{~cm}$
B) $T=2 \mathrm{~s}, \mathrm{~A}=2 \mathrm{~cm}$
C) $T=4 \mathrm{~s}, A=2 \mathrm{~cm}$
D) $T=2 \mathrm{~s}, \mathrm{~A}=1 \mathrm{~cm}$
E) $T=4 \mathrm{~s}, A=1 \mathrm{~cm}$

EXTRA: what is w?

A plot of displacement (in cm) as a function of time (in s) is shown above. Which function below describes this motion?
A) $x(t)=\cos (t)$
B) $x(t)=\cos (4 t)$
C) $x(t)=\cos (2 \pi t)$
D) $x(t)=\cos (\pi t)$
E) $x(t)=\cos (\pi / 2 t)$

A plot of displacement (in cm) as a function of time (in s) is shown above. Which function below describes this motion?
A) $x(t)=\cos (t)$
B) $x(t)=\cos (4 t)$
C) $x(t)=\cos (2 \pi t)$
D) $x(t)=\cos (\pi t)$
E) $x(t)=\cos (\pi / 2 t)$
period of \cos is 2π
graph is $\cos (\omega t)$: when $t=4 \mathrm{~s}$,
graph goes back to 1 , so must have $\omega t=2 \pi$ here.

$$
\omega=\frac{2 \pi}{4 s}=\frac{\pi}{2} s^{-1}
$$

Frequency \rightarrow Period

$$
x(t)=A \cos (\omega t+\phi)
$$

Period T : time from max \rightarrow max

$$
T=\frac{2 \pi}{\omega} \text { since cos repeats every } 2 \pi \text {. }
$$

Frequency f : oscillations per time $f=\frac{1}{T}$ gives: $\omega=2 \pi f$

