
Today's plan:

● Announcements 

●Python and graphical user interface (GUI).

● Timers on the MSP430

● Sensors



Lecture test

during the first lecture after the 

midterm break

I will bring to class a MSP430 based system doing something. It will 

only use hardware covered in the manual. You will have to specify 

all the connections and write a program in C which will run this 

system as shown.

You will be using your computer with all the programs you have 

written or tested as well as any notes or texts and the lab manual 

and lectures. You will submit your program as a file – just email it to 

me when the time is up (no later). 10% penalty per minute! 

Its all on the honor system, you will be expected to switch off any 

communication programs including email, texting and so on on your 

computer and not to communicate with anybody. 



Announcement:
Projects: you should start planning. You will need to provide a short 

written description (about 1/2 page) of what you plan to build. In it, 

describe (possibly in points): 

1) the function of the project, 2) an outline of 'how it will work,' both in 

terms of user interface and in terms of what hardware does what.  3) A 

list of what kinds of parts you will require. 4) How you plan to acquire 

parts. Submit on Canvas before  your lab 6 section.

Project Scope: Your project must use the MSP430 as a central 

component. Your project should incorporate at least one non-trivial 

external hardware component (sensor, motor, display etc), two if one of 

them was used in the labs 1-6. Your project may (but is not required) to 

communicate with a host computer for display or user interaction.

Due before lab 6 (week of February 26, 2024)



Python and GUI's

For part 8 you will need Python installed and example temperature programs 
tested.

It is interpreted, not compiled which make it faster to change program but the 
execution is slower and it take more memory.

It has the same format on windows, mac and linux

Remember that in python white spaces and indenting matters (unlike C where it's 
just for readability)

●



C vs Python:

Python programs generally consume much more memory and execute much
more slowly than an equivalent program in C.

For a well-written python program the speed penalty is often tolerable.

Why are we using python?

- It is much easier to make a non-trivial program (with GUI) work cross-platform 
in python than C.

- Interacting with system hardware (eg serial port) is more straightforward in python.



To make your python programs run tolerably fast:

If you are manipulating arrays of numbers,
1) always use numpy arrays
2) never iterate over the array if you can avoid it (and you can almost always avoid it!)

eg:

import numpy as np   # is similar to an include file, but way more powerful.
a = np.arange(0,50,1) # a is an array of 50 elements: 0, 1, 2 ... 49
b=a * 0.2 # b is an array 0, 0.2, 0.4, ... 0.98

As compared to:

a =  range(0,50,1)
b=[]  
for i in range(50):

b[i] = a[i]*0.2
Remember that in python # is a symbol for comment like // in C



import numpy as np
...
with serial.Serial(port,9600,timeout = 0.050) as ser
#sometimes serial has trouble unless you change the boud rate
# with timeout=0, read returns immediately, even if no data
# with timeout=.05, ser.read will wait for up to 50 ms for a byte to appear
# from the serial port, if there isn't one waiting.
...

#port = "/dev/ttyACM0"  #for Linux
#port = "COM3" #For Windows Com5 or Com7 Find out which is connected to Launchpad
#port = "/dev/tty.uart-XXXX" #For Mac

...

Python program List_All_coms.py is now included with temperature programs. 
It works on all 3 systems.



There are tons of python resources on the web.

Some useful starting points:

Beginners guide to python:
https://wiki.python.org/moin/BeginnersGuide

numpy:
http://www.numpy.org/

Matplotlib:
https://matplotlib.org/stable/users/index.html

Python resources:

https://wiki.python.org/moin/BeginnersGuide
http://www.numpy.org/
https://matplotlib.org/stable/users/index.html


Event Timing
The MSP430F5529 has many timer units that count without CPU intervention. See 
Chapter 17 in the family reference manual 
We used one of these timers to generate PWM signals on an output

One possibility to time an event is to:
1) start the event to time
2) Reset the timer value to 0 for example register TA0R.  To start the timer set it up in 
TAxCTR register. It starts when MC bit is changed from 0 to 2 (continuous) 
3) enter a loop that continuously checks to see if the event is finished
4) read the new timer value (overflows?)

read here

Event to time

Timer value





Example part of the code

unsigned int time;
TA0CTL = TASSEL_2 + MC_0 + ID_0;

// Timer A control set to SMCLK, stop count MC_0 and clear counter, no division –
//keep 1.048MHz, 

//start the event here
TA0CTL |= MC_2; // start count MC_2

// checking for the event to finish possibly with a while loop

time = TA0R;   //read the counter

// as long as there is no overflow, this gives the right answer
// timer must be configured to count all the way to 0xFFFF and not reset to 0 at TA0CCR0 
//like when we used it for PWM)
//



Event Timing - overflows

The timing registers are 16 bits long and run at approximately 1 MHz by default if fed by SMCLC. It 
means that any time longer than 216 microseconds will create an overflow – the counter value goes to 
zero and start again.

Event to time

Timer value

0

216

Some number smaller than the time we 
wanted to measure



Event Timing – Dealing with overflows

Two strategies:
1) Guarantee that the event to be timed is never longer than one timer period

(2^16 counts). How? Hardware prescale so that the counter counts slowly 
enough (set clock divider with IDx bits in TAxCTL)

PRO: might be easiest solution.
CON: might limit resolution.

2) Keep track of overflows (interrupts, or count overflows)

PRO: get the full resolution possible
CON: more complicated code needed to track overflows





General Advice:

Get pieces of a complicated system working one by one.

Ensure that each new piece doesn't break any old pieces.

When you combine programs make sure that all the setups are in the 
beginning. Avoid set up commands in the loops unless needed

Start with the simplest way, then if you have time and/or a good reason, move
to a better way.

For example try to get the distance sensor working with 1 byte accuracy and 
than may be try for 2 bytes

The debugger, voltmeter and oscilloscope can be very helpful!



Sensors and Actuators
Available sensors:

• Optical sensors
• Temperature
• Humidity
• Magnetic field
• Pressure
• Distance
• Position and bend
• Accelerometer
• Gyroscope
• Alcohol 
• GPS
• Infrared
• Infrared camera sensor
• Heart beat and blood oxygenetion

Actuators

• Servo motors
• Stepper motors
• DC motors
• Relays, 
• Solenoids
• “Robot” platforms



MQ analog gas sensors

1. MQ-2 Smoke Sensor

2. MQ-3 Alcohol Sensor

3. MQ-4 Methane Sensor

4. MQ-5 LPG Natural Gas City Gas Sensor

5. MQ-6 isobutane propane sensor

6. MQ-7 Carbon Monoxide Sensor Module

7. MQ-8 hydrogen sensor

8. MQ-9 Carbon Monoxide Combustible Gas Sensor

9. MQ-135 air quality detection sensor



SHT75 Temperature and Humidity Sensor

●Fully Calibrated
●Digital output
●Low power consumption
●Excellent long term stability
●two-wire serial interface.
●Accuracy +/- 0.5C



DS18B20  Temperature only

-Inexpensive,
- somewhat complicated interface
- high resolution 0.0625 degrees
- accuracy (+/- 0.5C)
- easy to multiplex many sensors



Also:

●Thermocouples
●Thermistors
●IR no contact sensor

MLX90614:



Infrared camera sensor

MLX90640 FIR Sensor

•Small size, low cost 32 pixel x 24 pixel IR 

array 

•Easy to integrate 

•Industry-standard 4 lead TO39 package 

•Factory calibrated 

•I2C compatible digital interface 

•Programmable frame rate 0.5 Hz to 32 Hz 

•3 V supply voltage 

•2 FOV options: 55° x 35° and 110° x 75°



Distance Sensors:
●Optical:
short range QRD1114,
medium range GP2D12

●Ultrasonic


