
Today:

● Announcement –lab notes marking

● Announcement –lecture test

● General info finding strategy

● Compering results of C and assembler code

● Activity 2

● Programing in C continuation – interrupts

● ADC introduction

Announcement:

Labs Marking scheme:

Labs 1&2 will be worth 4 points, labs 3&4 and 5&6 8 points each

pair.

Please submit on Canvas lab notes and annotated programs as a pdf
file before the beginning of lab 3.

Completeness and quality of procedure/circuits/code etc.
used to perform all the completed activities 5
General Report Structure:
objectives defined, clear enough statements of what is
being done and why, what the results were.
General clarity of the notes 2
Above and beyond. Evidence of exploration above and beyond
the specific tasks requested in the manual. 1

Lecture test on February 27th

Write a program in C doing ….

You will be using your computer with all the

programs you want as well as any notes or texts.

You will submit your program as a text file – just

email it to me when the time is up (no later). 10%

penalty per minute!

Its all on the honor system, you will be expected

not to communicate with anybody.

General info finding strategy
Documentation: read the manual!
- not always so easy. Which manual?

There are two major documents relevant for the microcontroller:
- Family reference guide [eg cpu instructions]
- chip data sheet [eg what pin can do what]

Both contain much more info than we need!

Use:
-Table of contents
-Keyword searching

Also:
- Course lab manual – general instruction, what tasks are required

Ground

C compared to assembler

● Why do we program in C?

● Why you might to have to use assembler in the

future

.include "msp430g2553.inc"

MOV.W #0x5a80,&Watchdog_Timer_WDTCTL

MOV.B #0x0041,&Port_1_2_P1DIR

MOV.B #0x0040,&Port_1_2_P1OUT

PUSH R13

PUSH R14

MOV.W #0x2844,R13

MOV.W #1,R14

DEC.W R13

SBC.W R14

JNE ($1_$2)

TST.W R13

JNE ($1_$2)

POP.W R14

POP.W R13

JMP (0xc02c)

NOP

XOR.B #0x0041,&Port_1_2_P1OUT

JMP (CL1)

MOV.W #0x0400,SP

CALL #_system_pre_init

CLR.W R12

CALL #main

MOV.W #1,R12

CALL #C$$EXIT

BIS.W #0x0010,SR

JMP __TI_ISR_TRAP

JMP (__TI_ISR_TRAP)

NOP

NOP

NOP

JMP (CL1)

NOP

MOV.W #1,R12

RET

AND.B @R15+,0xffff(R15)

AND.B @R15+,0xffff(R15)

.include "msp430g2553.inc"

start:

mov.w #WDTPW|WDTHOLD, &WDTCTL

mov.b #0x41, &P1DIR

mov.w #0x01, r8

repeat:

mov.b r8, &P1OUT

xor.b #0x41, r8

mov.w #60000, r9

waiter:

dec r9

jnz waiter

jmp repeat

Assembler program
compiled from C

The same program just
written in Assembler

Activity 2

Pin 1.3 is connected to 3.3 V and pin 1.0 is

connected to ground. Other pins are open.

What will be the decimal value of m after the

following commands are executed:

char m;

P1DIR = 0;

P1REN = 0b11111111;

P1OUT = 0b00000111;

m = P1IN;

Data types:

char, unsigned char – 8 bit integer (0 to 255 or -128 to 127) It can also

be interpreted as character depending on the context.

int, unsigned int – usually an integer of the native word size: 16 bits

(-32768 to 32767 or 0 to 65536)

long, unsigned long – 32 bit integer

(~ -2x109 to ~2x109 or 0 to ~4x109)

long long , unsigned long long – 64 bit integer

(~ -9x1018 to ~ 9 x 1018 or 0 to ~2 x 1019)

float – floating point number (32 bits)

(floating point operations are very expensive on a processor

like the msp430 that lacks a dedicated fpu - avoid if possible).

Program with interrupt: enable
#include <msp430.h>

void main(void)

{

WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

P1DIR = 0b00000001; //set P1.0 pin for output rest including P1.1 are inputs

P4DIR = 0b10000000; //set P4.7 pin for output

P1OUT = 0b00000011; // set Pin P1.0 to high and P1.1 to pullup

P4OUT = 0b10000000; // set Pin P4.7 to high

P1REN = 0b00000010; //enable pull up/down resistor on P1.1

P1IE = 0b00000010; //Enable input at P1.1 as an interrupt

P1IES= 0b00000010; //Interrupt occurs when input voltage goes from High to Low

_BIS_SR (LPM4_bits + GIE); //Turn on interrupts and go into the lowest

//power mode (the program stops here)

//Notice the strange format of the function, it is an "intrinsic"

//ie. not part of C; it is specific to this microprocessor

}

//Port 1 interrupt service routine starts below

void __attribute__ ((interrupt(PORT1_VECTOR))) PORT1_ISR(void) {

//code of the interrupt routine goes here

P1OUT ^= 0b00000001;

P4OUT ^= 0b10000000; // toggle the LEDs

P1IFG &= ~0b00000010; // Clear P1.3 IFG. If you don't, it just happens again.

}

Setting the bits

We want to set bit 3 in a P2REN register which

contains a number 0b11000000.

If we do:

P2REN = 0b00001000;

We clear the other 2 bits

Instead we do:

P2REN |= 0b00001000;

11000000 |00001000=11001000

Clearing the bits

P1OUT = 0b00000011; // set Pin P1.0 to high and P1.1 to pullup

I want to set P1.0 to low

If I do

P1OUT = 0b00000000; // I also cancelled the pullup!

Instead we do:

P1OUT &= ~0b00000001;

Which is the same as

P1OUT &= P1OUT &(~0b00000001);

0b00000011&11111110=000000010

Program with interrupt: general enable
#include <msp430.h>

void main(void)

{

WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

P1DIR = 0b00000001; //set P1.0 pin for output rest including P1.1 are outputs

P4DIR = 0b10000000; //set P4.7 pin for output

P1OUT = 0b00000011; // set Pin P1.0 to high and P1.1 to pullup

P4OUT = 0b10000000; // set Pin P4.7 to high

P1REN = 0b00000010; //enable pull up/down resistor on P1.1

P1IE = 0b00000010; //Enable input at P1.1 as an interrupt

P1IES= 0b00000010; //Interrupt occures when input voltage goes from High to Low

_BIS_SR (LPM4_bits + GIE); //Turn on interrupts and go into the lowest

//power mode (the program stops here)

//Notice the strange format of the function, it is an "intrinsic"

//ie. not part of C; it is specific to this microprocessor

}

//Port 1 interrupt service routine starts below

void __attribute__ ((interrupt(PORT1_VECTOR))) PORT1_ISR(void) {

//code of the interrupt routine goes here

P1OUT ^= 0b00000001;

P4OUT ^= 0b10000000; // toggle the LEDS is

P1IFG &= ~0b00000010; // Clear P1.3 IFG. If you don't, it just happens again.

}

Program with interrupt:interrupt routine
#include <msp430.h>

void main(void)

{

WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

P1DIR = 0b00000001; //set P1.0 pin for output rest including P1.1 are outputs

P4DIR = 0b10000000; //set P4.7 pin for output

P1OUT = 0b00000011; // set Pin P1.0 to high and P1.1 to pullup

P4OUT = 0b10000000; // set Pin P4.7 to high

P1REN = 0b00000010; //enable pull up/down resistor on P1.1

P1IE = 0b00000010; //Enable input at P1.1 as an interrupt

P1IES= 0b00000010; //Interrupt occures when input voltage goes from High to Low

_BIS_SR (LPM4_bits + GIE); //Turn on interrupts and go into the lowest

//power mode (the program stops here)

//Notice the strange format of the function, it is an "intrinsic"

//ie. not part of C; it is specific to this microprocessor

}

//Port 1 interrupt service routine starts below

void __attribute__ ((interrupt(PORT1_VECTOR))) PORT1_ISR(void) {

//code of the interrupt routine goes here

P1OUT ^= 0b00000001;

P4OUT ^= 0b10000000; // toggle the LEDS is

P1IFG &= ~0b00000010; // Clear P1.3 IFG. If you don't, it just happens again.

}

Program with interrupt: clear the flag

#include <msp430.h>

void main(void)

{

WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

P1DIR = 0b11110111; //set all P1 pins for output except P1.3

P1OUT = 0b01001001; // set Pins P1.0 and P1.6 to high and P1.3 to pullup

P1REN = 0b00001000; //enable pull up/down resistor on P1.3

P1IE = 0b00001000; //Enable input at P1.3 as an interrupt

_BIS_SR (LPM4_bits + GIE); //Turn on interrupts and go into the lowest

//power mode (the program stops here)

//Notice the strange format of the function, it is an "intrinsic"

//ie. not part of C; it is specific to this chipset

}

// Port 1 interrupt service routine

void __attribute__ ((interrupt(PORT1_VECTOR))) PORT1_ISR(void)

{ //code of the interrupt routine goes here

P1OUT ^=0b01000001; // toggle the LEDS

P1IFG &= ~0b00001000; // Clear P1.3 IFG. If you don't, it just happens again.

}

Interrupts

When interrupt occurs the current microprocessor’s
activity stops and the interrupt service routine (ISR) is
started. It is like a function with a microcontroller specific
format.
The event setting an interrupt is in fact setting a bit in a
specific register. This bit is called an interrupt flag The ISR
must clear this flag (some commands like the ones
accessing an output communication buffer clear the
specific flags automatically)!

Programming in C

Libraries:

there are some “standard” libraries available that extend the

operations you can easily use.

eg:

the math library gives access to functions like:

sin(x), cos(x), tan(x), sqrt(x), ln(x), log(x) etc...

To use math functions, you need to:

#include <math.h> at the top of the file

Other libraries provide routines for string manipulations and many other

things...

These libraries tend to take up a substantial amount of flash and

consume (precious) ram. You should try to avoid these on the MSP430

if at all possible!

Programming in C: functions

int multiply_together(int x, int y)

{

return x*y;

}

...

y = multiply_together(4,8);

...

You can define other functions that can

take arguments and return values.

The function definition either needs

to come in the file before you call it,

or you need to supply a function

prototype before you call it.

A prototype for this function would

simply be:

int multiply_together(int x, int y);

Indentation.

Please use proper indentation of your C code to make it readable!

There are tools that can help. Many text editors can help you

indent properly.

See

http://www.cprogramming.com/tutorial/style.html

For more details than you care about, see:

http://en.wikipedia.org/wiki/Indent_style

http://www.cprogramming.com/tutorial/style.html
http://en.wikipedia.org/wiki/Indent_style

Some Resources for C programming:

Operators and Operator Precedence:
http://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B#Operator_precedence

C reference guide:
https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html

Textbook: Introduction to Embedded Systems Using

Microcontrollers and the MSP430
http://webcat2.library.ubc.ca/vwebv/holdingsInfo?bibId=7372090

http://en.wikipedia.org/wiki/Operators_in_C_and_C++#Operator_precedence
http://webcat2.library.ubc.ca/vwebv/holdingsInfo?bibId=7372090

Analog to digital converter

Function: take an analog value (voltage in this

case) and convert it to a number.

Resolution (from number of bits)

Our analog to digital converter has 12 bits

Range (by default a power supply voltage, 3.3V,

but can be set up differently)

Using peripherals: Analog to digital converter

#include <msp430f5529.h>
#include<stdio.h>

int main(void)
{

WDTCTL = WDTPW + WDTHOLD;
ADC12CTL0 = ADC12SHT02 + ADC12ON; // Sampling time, ADC12 on
ADC12CTL1 = ADC12SHP; // sampling timer
ADC12CTL0 |= ADC12ENC; // ADC enable
P6SEL |= 0b00000001; // P6.0 allow ADC on pin 6.0
P1DIR |= 0b00000001; // set pin P1.0 as output

while (1)
{

ADC12CTL0 |= ADC12SC; // Start sampling
while (ADC12CTL1 & ADC12BUSY);//while bit ADC12BUSY in register ADC12CTL1 is high wait

if(ADC12MEM0>=3072) //This value depends on the input voltage
P1OUT |= BIT0;

else
P1OUT &= ~BIT0;

}
}

READING THE DATASHEET IS ESSENTIAL!

Using peripherals: Analog to digital converter

#include <msp430f5529.h>
#include<stdio.h>

int main(void)
{

WDTCTL = WDTPW + WDTHOLD;
ADC12CTL0 = ADC12SHT02 + ADC12ON; // Sampling time 16 cycles, ADC12 on
ADC12CTL1 = ADC12SHP; // sampling timer
ADC12CTL0 |= ADC12ENC; // ADC enable
P6SEL |= 0x01; // P6.0 allow ADC on pin 6.0
P1DIR |= 0x01; // set pin P1.0 as output

while (1)
{

ADC12CTL0 |= ADC12SC; // Start sampling
while (ADC12CTL1 & ADC12BUSY);//while bit ADC12BUSY in register ADC12CTL1 is high wait

if(ADC12MEM0>=3072) //This value depends on the input voltage
P1OUT |= BIT0;

else
P1OUT &= ~BIT0;

}
}

READING THE DATASHEET of the family IS ESSENTIAL

