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1 (10 points)

1.1

Using Dyson’s equation and the self-energy Πq(ωn) to second order in Λ, we get the following expression for

the full phonon propagator:
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We perform the analytic continuation

−iωn → ω + iη

to obtain the retarded correlation function
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1.2

Splitting the self-energy into its real and imaginary part, we can see that the real part modifies the phonon

dispersion Ωq:
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Let us now inspect the structure of the self-energy. For simplicitly, we will consider the case of zero temperature

in one dimension only. Here, the Fermi-factors are fk − fk+q = θ(k − kF ) − θ(k + kF − k), i.e. they give 1

within a shell of width q below the Fermi-surface and are zero otherwise. The self-energy correction is therefore

a correction to the phonon dispersion as a result of coupling to the Fermi sea.

1.3

We evaluate the self-energy correction for one dimensional case assuming εk = k2/2m. For this, we have to
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The sum diverges for small ω and k = ±2kF . This divergence signals an instability of the system towards a

formation of the dimerized phase, also known as Peierls instability. Physically electron-phonon systems in 1D

are known to dimerize (i.e. in a lattice model every other bond becomes slighly shorter), polyacetylene being a

prominent example of this phenomenon.

In dimensions higher than 1 the effect is also present but is weaker: the self energy itself remains finite but

its derivative has a divergence. The phonon dispersion thus develops a kink at ±2kF which is known as the

Kohn anomaly. This is also a measurable effect.

2 (10 points)

2.1

Assuming that a positive ionic background cancels out the Hartree contribution the total ground state energy

in the Hartree-Fock approximation is given by

EHFtot = Enon-int + Eex

where

Eex = −3e2pf
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was derived in D&S (6.2.13). We are left to compute the free-electron piece Enon-int:
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In total, we get
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as a final expression.

2.2

If the electron gas is polarized, we need to add up the contributions of the two spin species to the ground state

energy. We introduce Nσ, the number of electron with spin σ = ± and define the corresponding rsσ

4

3
π(rsσa0)3 =

V

Nσ
.

The ground state energy is now
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The last relation between rs and rsσ was obtained by recalling the definition
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Inserting this yields
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2.3

We compute the difference in the ground dstate energy between the fully polarized and unpolarized state
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Above a critical value of rcs = 5.45, the energy difference becomes negative and the fully magnetized state

(M = 1) has lower energy.

One may think about this in the following way: for larger rs the average spacing between electrons increases

while the electron density and pF decrease correspondingly. This lowers the non-interacting ground state energy

Enon-int. We have derived that Enon-int falls as 1/r2
s . The exchange energy, which is a negative correction, also

decreases, but only as 1/rs. Thus, for large enough rs, the exchange correction dominates. This leads to the

well known but rather counter-intuitive result that interactions in the electron gas become more important in

the dilute limit, a purely quantum effect rooted in the Pauli exclusion principle.

The exchange correction is larger for the fully magnetized state (−0.916·21/3NE0/rs compared to−0.916NE0/rs).

Intuitively, this is because the Pauli principle has the largest effect when all particles are indistinguishable (i.e.

have the same spin).

3 (5 bonus points)

The series can be summed up as shown in the figure below. This approach is sometimes called self consistent

Born approximation. The resulting Dyson equation then implicitly determines G but typically cannot be solved

analytically.

= +

x

In the case of short-range impurity potential, however, we can work out an analytic expression for the

series. The key observation is that the Fourier transform of the impurity potential is momentum independent
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for short-range impurities modeled by randomly distributed δ-function potentials, Uq = U . Using this, the

expression corresponding to the diagrams

becomes
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we can write this as
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We recognize the geometric series which we sum up to get the final expression
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