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1 (10 points)

Given the form of the Matsubara Green’s function in frequency and momentum space

Gk(ωn) =
1

βM

1

ω2
n + Ω2

k

we want to evaluate the following sum over Matsubara frequencies ωn = 2πn/β, n ∈ Z. We first convert the

sum into a contour integral by multiplying with the term β
eβω−1

which has first order poles at iωm, each with

residue 1. The integration is performed over the contour C that encloses all its poles. We get

Ckk′ =
1

β

∑
m

Gk(ωm)Gk′(ωn − ωm) =
1

β

1

2πi

∮
γ1

β

eβω − 1
Gk(iω)Gk′(ωn − iω)dω

=
1

β2M2

1

2πi

∮
γ1

1

eβω − 1

1

(iω)2 + Ω2
k

1

(ωn − iω)2 + Ω2
k′
dω

=
1

β2M2

1

2πi

∮
γ1

dω
1

eβω − 1

1

(ω − Ωk)(ω + Ωk)(ω − Ωk′ + iωn)(ω + Ωk′ + iωn)︸ ︷︷ ︸
f(ω)

We see that the integrand has poles at

ω = ±Ωk (1)

ω = ±Ωk′ − iωn (2)

in addition to the infinite number of poles at ω = iωm = i2πm/β.

Below is an illustration of the general strategy, taken from Altland and Simons. Following the definition,

we would have to integrate along the contour that encloses the infinite number of points at ω = 2πn/β, n ∈ Z.

We instead try to deform the contour into a circle of infinite radius.

Deforming the contour does not change the value of the integral as long the contour does not cross a pole

in the process. Since our Green’s function may have poles on its own (4 in our case, 2 poles are illustrated in

the figure), we actually cannot just push the contour all the way to infinity.

The next best thing is shown in the right panel. We see that we now have a contour of infinite radius

and some smaller contours that encircle the poles of the Green’s function. Since the Green’s function decays

sufficiently fast, the integral along the large circle vanishes. The remainig contour integrals are easily evalued

using the Residue theorem.

Note that the orientation of these new contours is now in the opposite sense. We have to take this into

account by multiplying with a minus sign!
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We thus get

Ckk′ =
1

β2M2

1

2πi

∮
γ2

f(ω)dω = − 1

β2M2

∑
k

Res(f, ωk)

where the sum is over the four poles listed in Eqs. (1-2).

The residues are

Res(f,±Ωk) = ∓ 1

2Ωk

1

e±βΩk − 1

1

Ω2
k′ + (ωn ∓ iΩk)

2

Res(f,±Ωk′ − iωn) = ∓ 1

2Ωk′

1

e±βΩk′−iβωn − 1

1

Ω2
k + (ωn ± iΩk′)2

and they sum up to yield the result

β2M2Ckk′ =
1

2Ωk

[
1

eβΩk − 1

1

Ω2
k′ + (ωn − iΩk)

2 −
1

e−βΩk − 1

1

Ω2
k′ + (ωn + iΩk)

2

]

+
1

2Ωk′

[
1

eβΩk′ − 1

1

Ω2
k + (ωn + iΩk′)

2 −
1

e−βΩk′ − 1

1

Ω2
k + (ωn − iΩk′)2

]
,

where we used the fact that e±iβωn = 1.

2 (10 points)

From the imaginary part of the retarded Green’s function, we can obtain the spectral density function

A(ω) = − 2

1− e−βω
ImGR(ω) .

The time-ordered Green’s function can be expressed in terms of A(ω) in the following way:

G(ω) =

∫ ∞
−∞

A(ω′)

{
1

ω − ω′ + iη
− e−βω

′

ω − ω′ − iη

}
dω′

2π

The strategy is now straightforward. Given GR, we compute A, and use it to compute G. The retarded Green’s

function for the phonon problem was derived in DS Eq. (2.3.10),

GRk (ω) =
1

2MΩk

{
1

ω − Ωk + iη
− 1

ω + Ωk + iη

}
We can extract the imaginary part by making use if the SokhotskiPlemelj identity (prove it as an exercise)

f(x)

x± iη
= ∓iπf(x)δ(x) + P f(x)

x
.
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We find

ImGRk = − π

2MΩk
(δ (ω − Ωk)− δ (ω + Ωk))

and

A(ω) =
2π

1− e−βω
1

2MΩk
(δ (ω − Ωk)− δ (ω + Ωk)) .

Inserting this into Eq. (3) yields

GTk (ω) = −nk + 1

2MΩk

(
1

ω + Ωk − iη
− 1

ω − Ωk + iη

)
− nk

2MΩk

(
1

ω − Ωk − iη
− 1

ω + Ωk + iη

)
Here we have used that the Bose-Einstein distribution is nk = (eβΩk − 1)−1 and nk + 1 = (1− e−βΩk)−1.

3 (20 points)

The ensemble average 〈u2
j 〉 can be obtained from the Matsubara Green’s function in the limit τ → 0+:

〈u2
j 〉 = lim

τ→0+
〈T uj(τ)uj(0)〉 = Gjj(0+) =

1

N

∑
k∈BZ

Gk(0+)eik(Rj−Rj) =
1

N

∑
k∈BZ

Gk(0+)

Here, we assume a d-dimensional crystal with N lattice sites. In class, we derived

Gk(τ = 0+) =
1

2ΩkM
coth

1

2
βΩk =

1

2ΩkM

(
2

eβΩk − 1
+ 1

)
and we are given the acoustic phonon dispersion

Ωk = 2

√
K

M

[
d∑
i=1

sin2(aki/2)

] 1
2

.

Thus, we next have to perform the k-sum

〈u2
j 〉 =

1

N

∑
k∈BZ

1

2ΩkM

(
2

eβΩk − 1
+ 1

)
. (3)

Unfortunately, a solution to this sum (or integral in the thermodynamic limit) in closed form is not known. We

will instead compute it in the Debye approximation. This approximation assumes a linear dispersion, i.e.

Ωk = Ωk =

√
K

M
a|k| = ck

Of course, in this case we cannot define a Brillouin zone anymore. What region of k-space should we then

integrate over? In the Debye approximation one integrates over a sphere in k-space of the same volume as the

Brillouin zone. This criterion allows for a definition of the Debye frequency ΩD by
∫ ΩD

0
D(Ω)dΩ = N , where

N is the number of lattice sites of the d-dimensional crystal.

The density of states is defined by:

D(Ω) =
g

V

∑
k

δ(Ω− Ωk)

where g is the degeneracy due to different polarizations. In the limit of long wavelengths and assuming a linear

dispersion we can approximate this as

D(Ω) =
g

V

∑
q

δ(Ω− c |k|) = g

∫
ddk

(2π)d
δ(Ω− c |k|) =

g

(2π)d
Φ(d)

∫
dkkd−1δ(Ω− ck)
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=
g

(2π)d
Φ(d)

Ωd−1

cd
=

g

2d−1πd/2Γ(d/2)

Ωd−1

cd

where the function Φ(d) is just the angular integral, i.e, the volume of the unit sphere in d dimensions.

Plugging the density of states into ∫ ΩD

0

D(Ω)dΩ = gN

we find
gV

2d−1πd/2Γ(d/2)

ΩdD
dcd

= gN, ΩD = 2
√
π

√
K

M
a

(
dN

2V
Γ(d/2)

)1/d

Replacing the sum in Eq. (3) by an integral and writing it in terms of D(Ω) we find

〈u2
j 〉 =

V

2MN

∫ ΩD

0

dΩ
D(Ω)

Ω

(
2

eβΩ − 1
+ 1

)
.

The first term represents thermal fluctuations while the second represents quantum fluctuations (zero-point

motion) of the ions. We now substitute the long wavelength form D(Ω) = AdΩ
d−1/cd found above and perform

the integral. We find

〈u2
j 〉 =

V

2MNcd
Ad

[
2bd(kBT )d−1 +

(ΩD)d−1

d− 1

]
with

bd =

∫ βΩD

0

dx
xd−2

ex − 1
.

Clearly this last integral is infrared divergent for d ≤ 2, implying that, according to the Lindemann criterion,

lattices are unstable in lower dimensions: the melting temperature, which is inversely proportional to the above

integral, is zero. In d = 2 the lattice is stable at T = 0. In d = 1 quantum fluctuation destroy the lattice even

at T = 0. These results can be understood as consequences of a general theorem due to Mermin and Wagner.

In d = 3 (where g = 3) the integral converges and we will evaluate it approximately as follows. For high

temperatures such that βΩD � 1 we may consider extending the upper integral boundary to ∞. This is

motivated from the fact that the integrand decays exponentially. We get:

b3 ≈
∫ ∞

0

dx
x

ex − 1
=
π2

6
.

However we observe that typical Debye temperatures in crystalline solids range from TD = 170K (gold) to

TD = 645 K (silicon) and melting temperatures are on the order of 1000K. We conclude that in most situations

βΩD . 1. Consequently, the low temperature limit is more appropriate here. We thus expand the exponential

for small x and obtain

b3 ≈
∫ βΩD

0

dx
x

1 + x− 1
= βΩD.

We use this to estimate the melting temperature TM from the Lindemann criterion,

TM =

[
c2L

2π2Mc3

3k2
BaθD

− 1

4
θD

]
,

with θD = ΩD/kB the Debye temperature.

Note: The results obtained above for d = 1, 2 should be regarded as a failure of the Lindemann criterion

in dimensions below 3. Clearly solids do exist in d = 1, 2 (think e.g. graphene, carbon nanotubes or DNA)

and are stable even at room temperature. What the divergences found above indicate is the lack of long-range

positional order in dimensions below 3. While in a 3D crystal positions of distant ions are perfectly correlated,

in 2D and 1D systems they are not. These low-dimensional ‘solids’ do retain their mechanical rigidity even

though technically we cannot classify them as crystals.
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