1 (5 points)

For time-independent Hamiltonians, the time evolution of operators in the Heisenberg picture is given by

$$
u_{j}(t)=e^{i H\left(t-t_{0}\right)} u_{j} e^{-i H\left(t-t_{0}\right)}
$$

where t_{0} is some arbitrary initial time. For simplicity, we only consider the case $t>t^{\prime}$. We can write

$$
\begin{aligned}
G_{i j}\left(t, t^{\prime}\right) & =-i\left\langle T\left[u_{i}(t) u_{j}\left(t^{\prime}\right)\right]\right\rangle=-i\langle 0| e^{i H\left(t-t_{0}\right)} u_{i}\left(t_{0}\right) e^{-i H\left(t-t_{0}\right)} e^{i H\left(t^{\prime}-t_{0}\right)} u_{j}\left(t_{0}\right) e^{-i H\left(t^{\prime}-t_{0}\right)}|0\rangle \\
& =-i\langle 0| e^{i E_{0}\left(t-t_{0}\right)} u_{i}\left(t_{0}\right) e^{-i H\left(t-t^{\prime}\right)} u_{j}\left(t_{0}\right) e^{-i E_{0}\left(t^{\prime}-t_{0}\right)}|0\rangle \\
& =-i e^{i E_{0}\left(t-t^{\prime}\right)}\langle 0| u_{i}\left(t_{0}\right) e^{-i H\left(t-t^{\prime}\right)} u_{j}\left(t_{0}\right)|0\rangle \\
& =G_{i j}\left(t-t^{\prime}\right)
\end{aligned}
$$

In going to the second line we used the fact that $|0\rangle$ is an eigenstate of H with eigenvalue E_{0}. Also note that any dependence on t_{0} drops out.

2 (10 points)

Since the Green's functions depend only on the difference $t-t^{\prime}$ in our case, we might as well set $t^{\prime}=0$:

$$
\begin{equation*}
G_{i j}^{0, R / A}(t)=\mp i \theta(\pm t)\left\langle\left[u_{i}(t), u_{j}(0)\right]\right\rangle_{0} \tag{1}
\end{equation*}
$$

We saw that, by expressing the displacement operator $u(t)$ in terms of creation and annihilation operators

$$
\begin{equation*}
u_{i}(t)=\frac{1}{\sqrt{2 M \Omega_{0}}}\left(B_{i}(t)+B_{i}^{\dagger}(t)\right) \tag{2}
\end{equation*}
$$

the Hamiltonian assumes the quadratic form

$$
H_{0}=\sum_{i} \Omega_{0}\left(B_{i}^{\dagger} B_{i}+\frac{1}{2}\right)
$$

where B_{i} are second-quantized bosonic operators satisfying the usual commutation relations

$$
\left[B_{i}, B_{j}^{\dagger}\right]=\delta_{i j}, \quad\left[B_{i}, B_{j}\right]=\left[B_{i}^{\dagger}, B_{j}^{\dagger}\right]=0
$$

and

$$
\begin{equation*}
B_{i}(t)=B_{i} e^{-i \Omega_{0} t}, \quad B_{i}^{\dagger}(t)=B_{i}^{\dagger} e^{i \Omega_{0} t} \tag{3}
\end{equation*}
$$

Inserting (2) into (1) we get

$$
\begin{aligned}
G_{i j}^{0, R / A}(t) & =\mp \frac{1}{2 M \Omega_{0}} i \theta(\pm t)\left\langle\left[e^{-i \Omega_{0}} t B_{i}+e^{i \Omega_{0} t} B_{i}^{\dagger}, B_{j}+B_{j}^{\dagger}\right]\right\rangle \\
& =\mp \frac{1}{2 M \Omega_{0}} i \theta(\pm t)\left(e^{-i \Omega_{0} t}-e^{i \Omega_{0} t}\right) \\
& =\mp \frac{1}{M \Omega_{0}} \theta(\pm t) \sin \Omega_{0} t
\end{aligned}
$$

3 (20 points)

The derivation of the time-ordered, advanced, and retarded Green's functions follows is done in Doniach and Sondheimer. Now, however, we can explicitly state the form of $D_{i j}$:

$$
D_{i j}=-\frac{K}{M}\left(\delta_{j, i+1}+\delta_{j, i-1}\right)
$$

Note that Eq. (1.1.7) in Doniach and Sondheimer assumes that $D_{i j}=D_{j i}$ is symmetric, so that we have made sure to symmetrize above expression. Its Fourier-transform is

$$
D_{k}=\sum_{j} D_{i j} e^{-i k\left(R_{i}-R_{j}\right)}=-\frac{K}{M} 2 \cos k a
$$

where a is the lattice constant. Note that $\Omega_{0}=\sqrt{\frac{2 K}{M}}$. Then

$$
\Omega_{k}^{2}=\Omega_{0}^{2}+D_{k}=\frac{2 K}{M}(1-\cos k a)=\frac{4 K}{M} \sin ^{2} \frac{k a}{2} .
$$

We observe that $\Omega_{k=0}=0$ and $\Omega_{k} \simeq c|k|$ for small k as expected for acoustic phonon modes in a solid.
Inserting this expression into the form of the Green's functions derived in Doniach and Sonheimer, we get

$$
\begin{aligned}
G_{k}(\omega) & =\frac{1}{M\left(\omega^{2}-\frac{4 K}{M} \sin ^{2} \frac{k a}{2}+i \eta\right)} \\
G_{k}^{R}(\omega) & =\frac{1}{M\left(\omega^{2}-\frac{4 K}{M} \sin ^{2} \frac{k a}{2}+i \eta \omega\right)} \\
G_{k}^{A}(\omega) & =\frac{1}{M\left(\omega^{2}-\frac{4 K}{M} \sin ^{2} \frac{k a}{2}-i \eta \omega\right)}
\end{aligned}
$$

Just for fun, we can plot the real and imaginary part of the time ordered correlation function $G_{k}(\omega)$. For this, we choose $K=M=1$ and $\eta=0.1$.

The positive ω branch of $\operatorname{Im} G_{k}(\omega)$ is related to the spectral function and shows essentially the dispersion relation of the acoustic phonons in this simple one-dimensional elastic solid.

